Web Data Extraction Dalam Analitika Data Audit: Pengembangan Artefak Teknologi Dalam Perspektif Design Science Research

  • Agung Darono Kementerian Keuangan Republik Indonesia, DKI Jakarta
Keywords: akses, akuisisi, artefak, instantiasi, kerangka kerja

Abstract

Perkembangan implementasi Teknologi Informasi dan Komunikasi (TIK) sebagai bagian pengendalian internal organisasi mendorong auditor mengembangkan analitika data audit (ADA/Audit Data Analytics) sebagai kerangka pengetahuan dan praktik untuk mendapatkan bukti audit dan informasi lainnya dari sekumpulan data elektronik terkait dengan pelaksanaan pada semua tahapan pekerjaan audit. Pada saat yang sama, terdapat kecenderungan organisasi untuk menyajikan datanya dengan aplikasi berbasis web. Terkait dengan keberadaan laman web sebagai sumber data (bukti audit) tersebut, telah berkembang teknik  ekstraksi data dari laman web yang disebut dengan web data extraction. Penelitian ini dengan menggunakan design science research methodology mengajukan temuan artefak yang berkaitan dengan model dan instantiasi (instantiation) web data extraction untuk implementasi ADA. Hasil penelitian ini diharapkan dapat menjadi tambahan referensi dalam ranah praktik audit berupa artefak dalam bentuk instantiasi penggunaan web data extraction untuk akusisi data sebagai bukti audit dengan sumber dari halaman web, baik dari aplikasi berbasis intranet ataupun internet. Penelitian ini juga berkontribusi dengan mengajukan kerangka praktikal implementasi web data extraction sebagai bagian dari ADA dalam melaksanakan pekerjaan audit. Selain itu, hasil kajian ini juga diharapkan menjadi referensi untuk penggunaan design science research methodology yang ternyata belum terlalu banyak diaplikasikan dalam penelitian dalam disiplin audit di Indonesia.

Downloads

Download data is not yet available.

References

Coderre, D. (2015). Letting the Data tell the Story, presented at the IIA Puget Sound Chapter [Online]. Diakses dari: https://chapters.theiia.org/puget-sound/ChapterDocuments/Data%20Analytics%20-20AM.pdf.

Cascarino, R.E. (2017). Data Analytics for Internal Auditors. CRC Press.

Bumgarner, N. & Vasarhelyi, M.A. (2015). Continuous Auditing—A New View CPA. Audit Analytics and Continuous Audit: Looking Toward the Future. New York, NY, USA: AICPA, pp. 3–52.

PwC (2017). How Data is Transforming Internal Audit’s Role in the Organization, Presented at the April IIA Meeting [Online]. Diakses dari: https://www.pwccn.com/en/risk-assurance/publications/transforming-ia-through-data-analytics.pdf.

FRC (2017). The Use of Data Analytics in the Audit of Financial Statements. London: Financial Reporting Council (FRC).

AICPA (2017). AICPA Guide to Audit Data Analytics. New York: American Institute of Certified Public Accountants, Inc. (AICPA).

EY (2015). How Big Data And Analytics Are Transforming The Audit, EY Reporting. [Online]. Diakses dari: https://www.ey.com/en_gl/assurance/how-big-data-and-analytics-are-transforming-the-audit.

Byrnes, P.E., et al. (2015). Evolution of Auditing: From the Traditional Approach to the Future Audit. Audit Analytics and Continuous Audit: Looking Toward the Future. New York, NY, USA: AICPA, pp. 71–84.

Vasarhelyi, M.A., Kogan, A. & Tuttle, B.M. (2015). Big Data in Accounting: an Overview. Accounting Horizons, Vol. 29(2), pp. 381–396.

Hasenstab, K. & Cohen, E.E. (2014). Extracting Your Company’s Data with the New Audit Data Standard, IFAC [Online]. Diakses dari: https://www.ifac.org/system/files/uploads/PAIB/Extracting-Your-Companys-Data-with-the-New-Audit-Data-Standard-Sept-2014.pdf.

ICAEW. (2016). Data Analytics for External Auditors. International Accounting, Auditing & Ethics (IAAE).

Ferrara, E., Meo, P.D., Fiumara, G. & Baumgartner, R. (2014). Web Data Extraction, Applications and Techniques: A Survey. Knowledge-Based Systems, Vol. 70, pp. 301-323, doi: 10.1016/j.knosys.2014.07.007.

Krotov, V. & Silva, L. (2018). Legality and Ethics of Web Scraping. the Twenty-fourth Americas Conference on Information Systems. New Orleans.

Krotov, V. & Tennyson, M. (2018). Scraping Financial Data from the Web Using R Language. Journal of Emerging Technologies in Accounting, Vol. 15(1), doi: 10.2308/jeta-52063.

Chanda, S.V. & Arivoli, A. (2020). Web Scraping in Finance using Python. International Journal of Engineering and Advanced Technology (IJEAT), Vol. 9(5), pp. 255–262, [Online]. Available: https://www.ijeat.org/wp-content/uploads/papers/v9i5/E9457069520.pdf.

Accounting Web. (2011). Which Web Based Accounting Application? Diakses dari: https://www.accountingweb.co.uk/community/blogs/john-cotter/which-web-based-accounting-application.

Zhao, B. (2017). Web Scraping. Encyclopedia of Big Data. Springer International Publishing, pp. 326–328.

Chaudhari, P.A. & Paikrao, R.L. (2012). Web Data Extraction. IJCA Proceedings on Emerging Trends in Computer Science and Information Technology (ETCSIT2012), No. 4, pp. 13–17.

Kokkoras, F., Ntonas, K. & Bassiliades, N. (2013). DEiXTo: A Web Data Extraction Suite, pp. 9–12, doi: 10.1145/2490257.2490297.

Shidore, S. (2017). On the Legality and Ethics of Web Scraping [Online]. Diakses dari: https://www.linkedin.com/pulse/legality-ethics-web-scraping-sudarshan-shidore.

Johannesson, P. & Perjons, E. (2014). An Introduction to Design Science. Heidelberg: Springer.

Booch, G., Rumbaugh, J. & Jacobson, I. (1998). Unified Modeling Language User Guide. Reading, Massachusetts: Addison Wesley.

Liu, Q. (2014). The Application Of Exploratory Data Analysis in Auditing [Ph.D. Thesis]. Rutgers The State University of New Jersey.

Kogan, A., Mayhew, B.W. & Vasarhelyi, M.A. (2019). Audit Data Analytics Research—An Application of Design Science Methodology. Accounting Horizons, Vol. 33, pp. 69–73.

Davenport, T.H. & Harris, J.G. (2007). Competing on Analytics: The New Science of Winning. Harvard Business Review Press.

Duan, L. & Xiong, Y. (2015). Big Data Analytics and Business Analytics. Journal of. Management Analytics, Vol. 2(1), pp. 1–21 [Online]. doi:10.1080/23270012.2015.1020891.

Richardson, V.J., Teeter, R. & Terrell, K.L. (2019). Data Analytics for Accounting. New York: McGraw-Hill Education.

Davenport, T.H. (2013). What Do We Talk About When We Talk About Analytics? Enterprise Analytics Optimize Performance, Process, and Decisions Through Big Data. New Jersey: Pearson Education, Inc., pp. 25–33.

Power, D.J., Heavin, C., McDermott, J. & Daly, M. (2018). Defining Business Analytics: An Empirical Approach. Journal of Business Analytics, Vol. 1(1), pp. 40–53, doi: 10.1080/2573234X.2018.1507605.

White, C. & Imhoff, C. (2010). Advanced Analytics and Business Intelligence: Term Abuse? Diakses dari: http://www.b-eye-network.com/view/13797.

Lambrecht, A.J., Laurent, J.E., Millar, R.B. & Sparks, D.E. (2011). Data Analysis Technology. Florida, USA: Institute of Internal Auditors.

Pett, J., Barnard, D., Agarwal, V. & Miller, S. (2013). The Data Conundrum Finding Your Path With Data Analytics [Online]. Diakses dari: https://cdn.cfo.com/content/uploads/2013/12/PwCs-Internal-Audit-Analytics-Conundrum-Webcast-12-5-13.pdf.

ISACA. (2011). Data Analytics—A Practical Approach. IL, USA.

Kamanwar, N.V. & Kale, S.G. (2016). Web Data Extraction Techniques: A Review. 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), pp. 1–5.

Vargiu, E. & Urru, M. (2013). Exploiting Web Scraping in a Collaborative Filtering Based Approach to Web Advertising. Artificial Intelligence Research, No. 2013, p. 2.

Macapinlac, T. (2019). The Legality of Web Scraping: A Proposal. Federal Communications Law Journal, Vol. 71(3), pp. 399–422.

Glez-Peña, D., Lourenco, A., López-Fernández, H., Reboiro-Jato, M. & Fdez-Riverola, F. (2013). Web Scraping Technologies in an API World. Brief Bioinform, Vol. 15, doi: 10.1093/bib/bbt026.

Neumann, M., Steinberg, J. & Schaer, P. (2017). Web-Scraping for Non-Programmers: Introducing OXPath for Digital Library Metadata Harvesting. Code4Lib J., Vol. 38 [Online]. Diakses dari: https://journal.code4lib.org/articles/13007.

Microsoft. (2020). Get Webpage Data By Providing Examples. [Online]. Available: https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-connect-to-web-by-example.

Meschenmoser, P., Meuschke, N., Hotz, M. & Gipp, B. (2016). Scraping Scientific Web Repositories: Challenges and Solutions for Automated Content Extraction, Vol. 22(9/10) [Online]. Diakses dari: http://www.dlib.org/dlib/september16/meschenmoser/09meschenmoser.print.html.

Alex-Adrien, A. (2019). Concrete Example of Web Scraping with Financial Data. https://www.sipios.com/blog-tech/concrete-example-of-web-scraping-with-financial-data.

Sabri, I.A.A., Man, M., Bakar, W.A. & Rose, A.N.M. (2019). Web Data Extraction Approach for Deep Web using WEIDJ. Procedia Computer Science, Vol. 163, pp. 417–426. doi: 10.1016/j.procs.2019.12.124.

Josi, A., Abdillah, L.A. & Suryayusra. (2014). Penerapan Teknik Web Scraping pada Mesin Pencari Artikel Ilmiah. Jurnal Sistem Informasi, Vol. 5(2), pp. 159–163. [Online]. Diakses dari: https://arxiv.org/ftp/arxiv/papers/1410/1410.5777.pdf.

Creswell, J.W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Thousand Oaks, California: SAGE Publications.

Azwar, W. & Muliono. (2019). Filsafat Ilmu - Cara Mudah Memahami Filsafat Ilmu. Jakarta: PrenadaMedia Group (Divisi Kencana).

Hevner, A.R., March, S.T., Park, J. & Ram, S. (2004). Design Science In Information Systems Research. MIS Quarterly, Vol. 28(1), pp. 75–105.

Zeleti, F.A., Ojo, A. & Curry, E. (2016). Exploring The Economic Value Of Open Government Data. Government. Information Quarterly, Vol. 33(3), pp. 535–551.

Davis, G.B. (2003). Building an International Academic Discipline in Information Systems. Exploring Patterns in Information Management: Concepts and Perspectives for Understanding IT-Related Change. Stockholm, Sweden: The Economics Research Institute.

Hevner, A.R., March, S.T., Park, J. & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, Vol. 28(1), pp. 75–105.

Iivari J. & Venable, J.R. (2009). Action Research And Design Science Research - Seemingly Similar But Decisively Dissimilar. ECIS 2009 Proceedings, p. 73, [Online]. Diakses dari: http://aisel.aisnet.org/ecis2009/73.

Zapadka, P., Brendel, A.B. & Kolbe, L.M. (2018). Design Science Research in Green IS: Analyzing The Past to Guide Future. the European Conference on Information Systems (ECIS) [Online]. Diakses dari: https://aisel.aisnet.org/ecis2018_rp/115.

March, S.T. & Smith, G.F. (1995). Design and Natural Science Research on Information Technology. Decision Support System, Vol. 15(4), pp. 251–266 [Online]. Diakses dari: https://www.sciencedirect.com/science/article/pii/0167923694000412.

Hevner, A.R. & Chatterjee, S. (2010). Design Research in Information Systems Theory and Practice. New York: Springer.

Published
2020-11-04
How to Cite
Darono, A. (2020). Web Data Extraction Dalam Analitika Data Audit: Pengembangan Artefak Teknologi Dalam Perspektif Design Science Research. Teknika, 9(2), 97-105. https://doi.org/10.34148/teknika.v9i2.283
Section
Articles