
41

TEKNIKA, Volume 14(1), March 2025, pp. 41-46

ISSN 2549-8037, EISSN 2549-8045

Andjarwirawan, J.: Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

DOI: 10.34148/teknika.v14i1.1089

Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

Justinus Andjarwirawan

Department of Informatics, Petra Christian University, Surabaya, East Java, Indonesia

E-mail: justin@petra.ac.id

 (Received: 25 Oct 2024, revised: 18 Nov 2024, 22 Nov 2024, accepted: 25 Nov 2024)

Abstract

The increasing demand for secure, seamless authentication mechanisms in public and private networks has fueled the need for

more robust network access control (NAC) systems, as well as Single Sign-On (SSO) which is critical for organizations that

require seamless and secure access across different platforms. This paper explores SSO in a fully open source implementations

with Keycloak, RADIUS and LDAP; extending to captive portal implementations with PacketFence for Wi-Fi authentication.

Specifically, this paper highlights the integration of PacketFence with FreeRADIUS for captive portal authentication, leveraging

Keycloak for identity management and providing users with secure Wi-Fi access. Real-world examples, such as authenticating

campus network users over Wi-Fi with 802.1X and captive portals, illustrate how these systems work in tandem to provide

scalable and secure network access control. Testing showed up to 500 concurrent users with stable performance, minimal latency

at a case study university. Key performance metrics included response times below 30ms.

Keywords: SSO, RADIUS, LDAP, OAuth 2.0, NAC.

I. INTRODUCTION

With cloud-based applications and mobile device

proliferation, secure and unified authentication mechanisms

are essential. Organizations struggle with managing multiple

credentials and ensuring compliance. This paper addresses

these gaps through a practical SSO implementation leveraging

open-source tools like Keycloak, FreeRADIUS, and

PacketFence. The integration provides a scalable solution to

enhance network access security and user experience, with

examples from university and enterprise deployments

demonstrating significant efficiency improvements..

Traditional authentication solutions often involve

cumbersome, decentralized systems, leading to security risks

and poor user experiences. Combining technologies like

Keycloak, FreeRADIUS, and PacketFence provides a

powerful, integrated solution for secure SSO and network

access control.

Keycloak handles identity management, while

FreeRADIUS, and LDAP provides a scalable infrastructure for

managing users across multiple platforms. PacketFence adds a

layer of Network Access Control (NAC) by providing a

captive portal for Wi-Fi users, giving administrators fine-

grained control over network access.

The implementation of Single Sign-On (SSO) has become

critical in addressing the challenges of secure and seamless

access to multiple networked applications. organizations,

particularly educational institutions and enterprises, often face

issues such as managing multiple credentials, ensuring

compliance with data security regulations, and providing a

user-friendly authentication experience.

For instance, XYZ university (Krawczyk & Pirogova,

2022) implemented SSO using Keycloak and LDAP to

streamline access for over 10,000 students and staff, leading to

a 40% reduction in password-related helpdesk tickets.

Similarly [1], a multinational corporation (Arnaud & Leclerc,

2023) leveraged PacketFence and Freeradius to enhance

network security by segregating guest and internal user traffic

while maintaining seamless SSO access for internal

applications [2]. Lastly, Kovac & Petrovic (2021)

demonstrated the effectiveness of Keycloak in managing

hybrid cloud environments, highlighting its flexibility in

integrating with multiple authentication systems [3].

This paper focuses on the practical implementation of SSO

using Keycloak, RADIUS, LDAP, and PacketFence to address

these challenges. the approach aims to provide a robust,

scalable, and secure network access solution that meets the

needs of diverse organizational environments.

42

TEKNIKA, Volume 14(1), March 2025, pp. 41-46

ISSN 2549-8037, EISSN 2549-8045

Andjarwirawan, J.: Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

DOI: 10.34148/teknika.v14i1.1089

II. RELATED WORK

Several studies have explored the integration of NAC

systems and IAM solutions to provide more efficient

authentication methods. In [4], research on the growing

importance of identity federation and SSO frameworks for

enterprise networks is emphasized, particularly as

organizations expand their networks and adopt cloud-based

infrastructures. Another study [5] highlights the role of NAC

systems like PacketFence in managing wireless user access

through dynamic VLAN assignment, endpoint security, and

guest access.

Keycloak’s capability to manage user identities and

provide OAuth2/OpenID Connect support for SSO

authentication has been well-documented in [6], where the

advantages of its role in providing centralized identity

management are discussed. Previous research has focused on

integrating Keycloak with cloud platforms, but its application

in on-premise WiFi access scenarios, as demonstrated in this

journal, remains under-explored.

III. IMPLEMENTATION DESIGN

This study implements a network access control system

integrating Keycloak for identity management, PacketFence

for captive portal functionality, FreeRADIUS for

authentication, and LDAP for directory services. The

methodology includes system setup, configuration, and

testing in a simulated campus environment. Key steps

involved configuring OAuth2 for secure communication,

enabling SSO, and optimizing user flow.

The scenario of this implementation involves Wi-Fi users

connecting to a campus network with an authentication

system running behind a captive portal as a Network Access

Control, and an identity system to manage user roles and

access rights to the institution’s information system as well as

a Single Sign-On to provide sessions for all applications that

require an authentication. Behind the process, the

authentication goes both to the captive portal and Keycloak,

where PacketFence forwards to, providing both authentication

and Single Sign-On. Optionally, PacketFence may

authenticate directly to FreeRadius but will not apply a Single

Sign-On. The deployment is shown in Figure 1.

The architecture of the whole system is described as

follows:

Figure 1. Implementation Design

A. PacketFence

PacketFence is a fully-featured, open-source Network

Access Control (NAC) solution that provides a captive portal

for managing and securing network access, including Wi-Fi

and wired networks. It integrates seamlessly with

authentication services such as FreeRADIUS and LDAP,

allowing it to authenticate users via SSO or other mechanisms

like 802.1x. PacketFence is commonly deployed in

educational institutions, campuses, and enterprises where

guest and user network access needs to be tightly controlled.

PacketFence features:

• Captive Portal Authentication: PacketFence offers

customizable captive portals for Wi-Fi users, forcing them

to authenticate before gaining network access.

• RADIUS and LDAP Integration: It integrates with

RADIUS and LDAP for centralized user authentication.

• Guest and BYOD Management: PacketFence supports

Bring Your Own Device (BYOD) policies and allows guest

users to authenticate via a web portal.

• Compliance and Auditing: It provides mechanisms for

auditing network access, ensuring compliance with

security policies.

• PacketFence can also be used as LAN users authentication

portal, as PacketFence may integrate with port-based

authentication 802.1x.

B. RADIUS

In this scenario, a Wi-Fi captive portal is delivered using

PacketFence integrated with FreeRADIUS for the RADIUS,

LDAP with OpenLDAP (slapd), and Keycloak. This setup

allows campus users to authenticate via the captive portal

before gaining network access. RADIUS and LDAP may use

plain text to authenticate which can lead to a security issue.

This scenario may somehow still be implemented because of

legacy protocols and hashing algorithms, as well as in a

migration from a legacy PAM based authentication. LDAP

stores users’ passwords in its own format, therefore LDAP

checks the input password in plain text. Keycloak serves as the

SSO provider to serve sign-in session for general applications

which are mostly web-based, while FreeRADIUS acts as the

backend for authenticating users against LDAP.

C. Keycloak

1. Keycloak is an open-source identity and access

management solution supporting multiple authentication

protocols (OAuth2, OpenID Connect, SAML) and

providing SSO across various services, deployed on a

Linux virtual machine (Ubuntu 24.04 LTS) in a

containerized environment (Docker). Once installed,

Keycloak is configured with a new realm for managing

users and applications.

2. User Federation: In the Keycloak admin console, LDAP is

configured as the user federation provider. This will allow

Keycloak to authenticate users against an LDAP backend,

which is OpenLDAP. Keycloak by itself may not need an

LDAP backend because Keycloak can provide users

locally.

43

TEKNIKA, Volume 14(1), March 2025, pp. 41-46

ISSN 2549-8037, EISSN 2549-8045

Andjarwirawan, J.: Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

DOI: 10.34148/teknika.v14i1.1089

3. Creating an OAuth2 client for PacketFence: a client is

created in Keycloak for PacketFence, enabling OAuth2 as

the authentication method. PacketFence will use this client

to authenticate Wi-Fi users through the captive portal.

4. SSO Integration: Keycloak is configured for SSO across

network services. For web applications and network

access, users will authenticate once using their Keycloak

credentials.

D. Packetfence Configuration

Once PacketFence is installed, it is configured with the

network interfaces for captive portal services. At least two

network interfaces are required: one for management and one

for providing access to clients through the captive portal.

E. Captive Portal Configuration

1. Enabling the Captive Portal: In the PacketFence web

interface, the captive portal for the Wi-Fi interface (eth1 in

this case) is enabled. Users connecting to the Wi-Fi

network will be redirected to this portal for authentication.

2. Configuring FreeRADIUS in PacketFence: PacketFence

uses FreeRADIUS to authenticate users via the captive

portal. The RADIUS server is configured to communicate

with an LDAP backend for authenticating users.

3. OAuth2 integration with Keycloak: PacketFence is

configured to use Keycloak as the OAuth2 provider.

4. Redirecting Wi-Fi users to Captive Portal: all Wi-Fi users

are redirected to the PacketFence captive portal upon

connecting to the Wi-Fi network. This can be enforced by

configuring the wireless access points (APs) to use

PacketFence as the authentication source.

F. OAuth 2.0

OAuth, short for "Open Authorization," is a widely

adopted standard for secure authorization in modern

applications, enabling users to grant third-party applications

access to their resources without sharing their credentials.

Traditional authentication mechanisms that require users to

provide credentials to third-party services pose significant

security risks, such as password leakage and identity theft.

OAuth addresses these challenges by providing a secure,

token-based authorization framework that separates the

process of granting access from user authentication.

OAuth allows users to approve one application to interact

with another on their behalf without directly exposing their

credentials. For example, a user might use their Google

account to log into a third-party app, granting that app limited

access to their Google Drive data without sharing their Google

password.

OAuth has evolved over time, with the most recent version

being OAuth 2.0, which offers improved simplicity and

flexibility and it is the most widely used authorization

framework today.

OAuth operates based on a set of key components, which

together enable secure authorization:

• Resource Owner (User): The individual or entity that owns

the data or resource being accessed. In most cases, the user

of a service (e.g., an app or a website) is the resource

owner.

• Client (Third-Party Application): The application that

requests access to the resource owner's data. This is often

a third-party service or app that the user interacts with,

such as a mobile app requesting access to the user's photos

stored in a cloud service. In this case PacketFence is the

third-party app to the Keycloak’s OAuth 2.0.

• Authorization Server: The server that authenticates the

resource owner and issues access tokens to the client. It

verifies the user’s identity and ensures that the client has

the correct permissions to access the resource.

• Resource Server: The server hosting the protected

resources (e.g., user data). It validates the access token

issued by the authorization server before granting the

client access to the resources.

• Access Token: A credential issued by the authorization

server that the client uses to access the resource server.

The token is typically short-lived and is passed between

the client and the resource server for each request.

The process of OAuth authorization involves a series of

steps known as the "OAuth flow." OAuth 2.0 defines several

grant types, or authorization flows, that outline how different

kinds of clients (web apps, mobile apps, etc.) can interact with

the authorization and resource servers. The most common

flows include:

Authorization Code Grant Flow.

The authorization code flow is the most secure and widely

used OAuth flow, particularly for web applications. The

process involves the following steps:

• Authorization Request: The client (third-party app)

redirects the user to the authorization server with a request

for access to specific resources. The client also provides a

redirect URI, where the user will be sent back after

authentication.

• User Authentication: The user logs into the authorization

server (if not already logged in) and consents to granting

the requested access to the client.

• Authorization Code Issued: Once the user consents, the

authorization server redirects the user back to the client

with an authorization code. This code is short-lived and

can only be used once.

• Exchange Authorization Code for Token: The client sends

the authorization code to the authorization server’s token

endpoint, along with its own credentials (e.g., client ID

and client secret), to obtain an access token.

• Access Token Issued: The authorization server validates

the authorization code and issues an access token to the

client.

• Access Resource: The client uses the access token to

request the desired resources from the resource server. If

the access token is valid, the resource server grants access

to the requested resource.

Implicit Grant Flow

44

TEKNIKA, Volume 14(1), March 2025, pp. 41-46

ISSN 2549-8037, EISSN 2549-8045

Andjarwirawan, J.: Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

DOI: 10.34148/teknika.v14i1.1089

The implicit grant flow is typically used by single-page

applications (SPAs) or mobile apps, where the client cannot

securely store sensitive information like a client secret. The

steps are similar to the authorization code flow but with a key

difference: instead of an authorization code, the access token

is issued directly after the user authenticates. Risk is the main

drawback of the implicit flow is that the access token is

exposed in the browser’s address bar, making it more

vulnerable to interception.

Client Credentials Grant Flow

The client credentials flow is used for machine-to-machine

(M2M) communication, where the client is a trusted entity

that does not involve user authentication (e.g., a backend

service accessing another service). The client authenticates

directly with the authorization server using its credentials

(client ID and secret) and receives an access token.

Resource Owner Password Credentials Flow

In this flow, the user provides their credentials (username

and password) directly to the client. The client then exchanges

these credentials for an access token from the authorization

server. This flow is considered insecure because it requires the

user to trust the client with their credentials. It is only

recommended for use in scenarios where the client is highly

trusted (e.g., a company’s own mobile app).

An access token is the credential that the client uses to

access resources on behalf of the user. Tokens are typically

short-lived and can have a variety of formats, such as JWT

(JSON Web Token). The token includes information like the

scope of access, expiration time, and resource owner

information.

A refresh token is a long-lived token that can be used by

the client to obtain a new access token after the current one

expires. Refresh tokens are often used in the authorization

code flow to maintain continuous access without requiring the

user to log in again.

OAuth enables Single Sign-On (SSO) functionality by

allowing users to authenticate once with an identity provider

(e.g., Google, Facebook, FreeRadius with LDAP) and then

use that authentication to access multiple services without

logging in again.

G. LDAP Configuration

LDAP installation and configuration are straightforward

as it is a directory service which holds users’ identities and

their organization units along with access rights information

which is mandatory for an institution to operate.

The objecClass to use in the scenario are account and

posixAccount because many attributes in these objectClasses

can be used to store access rights information, as well as

userPassword for the authentication which later will be

accessed by FreeRADIUS or KeyCloak. LDAP server is

provided whereas KeyCloak may use its own users, because

the LDAP itself can be used by other applications. In this case

LDAP can be assigned to centralized users’ credentials. New

users, modifications and deletions only to be operated from

LDAP, and the rest of the systems will follow.

The LDIF format for an LDAP user is as followed:

dn: uid=<user>,dc=example,dc=com

uid: <user>

cn: Full Name

objectClass: account

objectClass: posixAccount

uidNumber:

gidNumber:

homeDirectory:

H. FreeRADIUS Configuration

Integrate FreeRADIUS with OpenLDAP

1. Configuring RADIUS for LDAP Authentication: LDAP

module in RADIUS must be enabled in order to

authenticate to LDAP instead of RADIUS directly to its

default authentication method, which is PAM or Linux’s

system users.

ldap {

 server = "ldap://ldap.example.com"

 identity = "uid=admin,cn=users,

 cn=accounts,dc=example,dc=com"

 password = "admin_password"

 base_dn = "dc=example,dc=com"

}

2. EAP and 802.1x Setup: Enabling EAP (Extensible

Authentication Protocol) in FreeRADIUS to handle 802.1X

requests from PacketFence. The `eap.conf` file is

configured to support PEAP or EAP-TTLS, which is

commonly used for Wi-Fi authentication.

eap {

 default_eap_type = peap

 peap {

tls_certfile=/etc/ssl/certs/radius.crt

tls_keyfile=/etc/ssl/private/radius.ke

y

tls_ca_certfile=/etc/ssl/certs/ca.pem

 }

}

The 802.1x can also be used in switch devices to

authenticate LAN users, using the same backend as the Wi-

Fi access points, providing a single authentication system.

3. Linking FreeRADIUS with PacketFence: FreeRADIUS is

set up to accept authentication requests from PacketFence.

Add the PacketFence IP address and shared secret to the

`clients.conf` file in FreeRADIUS.

client packetfence {

 ipaddr = 192.168.1.10

 secret = shared_secret

}

45

TEKNIKA, Volume 14(1), March 2025, pp. 41-46

ISSN 2549-8037, EISSN 2549-8045

Andjarwirawan, J.: Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

DOI: 10.34148/teknika.v14i1.1089

IV. AUTHENTICATION TEST

Once everything is configured, the captive portal is tested

by connecting a Wi-Fi client to the network:

1. Connecting to the Wi-Fi Network: The user connects to the

campus Wi-Fi. The wireless access point forwards the

authentication request to PacketFence. Any other

application may authenticate to KeyCloak to gain access

sessions for applications as KeyCloak authenticate to

LDAP as well.

2. Captive Portal Redirection: The user is redirected to the

PacketFence captive portal, where they are prompted to log

in with a username and password. The gateway or router

must be able to redirect packet to PacketFence as

PacketFence may not always placed as a gateway.

3. OAuth2 Authentication with Keycloak: normally a user is

redirected to the Keycloak login page. After logging in,

Keycloak issues an OAuth2 token, which is verified by

PacketFence. But in this case a user only needs to

authenticate once through PacketFence’s captive portal. To

establish communication between PacketFence and

Keycloak:

• OAuth2 Plugin in PacketFence: PacketFence supports

OAuth2-based authentication. The captive portal was

configured to use Keycloak as the OAuth2 provider.

• Token Exchange: After users authenticate via Keycloak,

the system provides an access token, which PacketFence

uses to grant access to the network.

• Session Management: Once the user is authenticated via

SSO, the session is managed through PacketFence,

ensuring that the user stays connected to the network

without the need for repeated authentication.

4. FreeRADIUS Authentication: PacketFence forwards the

authentication request to FreeRADIUS, which queries

LDAP to authenticate the user. This scenario is used when

there is no need of an SSO, only as a means to authenticate.

5. Network Access Granted: Once authenticated, the user is

granted access to the Wi-Fi network. When using the

KeyCloaks portal, besides granted to the network the user

also gains SSO sessions for all applications.

During the implementation, several challenges were

encountered:

• Session Timeout: users occasionally experienced

unexpected logouts due to short-lived sessions in

Keycloak. This issue was resolved by adjusting the session

timeout settings in both Keycloak and PacketFence.

• User Experience: Users expressed concerns about being

redirected multiple times between the captive portal and the

SSO login page. This was mitigated by improving the flow

and reducing unnecessary redirects.

• Network Performance: During peak times, the captive

portal caused delays in authentication, primarily due to the

large volume of RADIUS requests. This issue was

addressed by optimizing the PacketFence configuration

and increasing the server capacity.

The integration of PacketFence with Keycloak provided a

seamless and secure SSO experience for WiFi users.

Keycloak's SSO mechanism allowed users to authenticate with

their existing corporate credentials, simplifying the login

process and improving user satisfaction. The use of

PacketFence ensured that unauthorized devices could not

access the network, thereby enhancing security.

Performance metrics collected during the testing phase

demonstrated a minimal impact on network latency (response

time between client request and authentication response), and

the system successfully managed up to 500 concurrent logins

during peak hours. Key metrics include network latency,

maintained below 300ms for 95% of requests under peak

loads. Figure 2 shows that there is no significant change in

latency (Y axis, in milliseconds) on the number of concurrent

users (X axis), only a slight unstable latency on higher number

of concurrent users. Moreover, the centralized identity

management system facilitated easier user management and

reduced administrative overhead.

Figure 2. Network latency and concurrent users

V. SECURITY CONSIDERATIONS

When implementing captive portal authentication with

PacketFence and FreeRADIUS, several security factors must

be considered:

1. TLS Encryption: All communications between clients,

PacketFence, FreeRADIUS, and Keycloak should be

encrypted using TLS to prevent man-in-the-middle attacks.

An SSL certificate with its CA chain bundle can be used.

2. Using LDAPS instead of LDAP: even when LDAP server

is in the same server with FreeRADIUS, the best is always

run the encrypted service of LDAP which is LDAPS.

Placing LDAP, KeyCloak dan RADIUS in the same server

is to provide more security as RADIUS or Keycloak may

authenticate to LDAP in plain text. This also an SSL

certificate can be used.

3. OAuth2 Token Security: Ensuring that OAuth2 tokens are

securely handled and transmitted between Keycloak,

PacketFence, and clients. Using HTTPS for all OAuth2

endpoints. If an access token is intercepted by an attacker,

they can use it to gain unauthorized access to resources.

This is why tokens should be encrypted and transferred

0

5

10

15

20

25

30

35

1
0

4
0

7
0

1
0

0

1
3

0

1
6

0

1
9

0

2
2

0

2
5

0

2
8

0

3
1

0

3
4

0

3
7

0

4
0

0

4
3

0

4
6

0

4
9

0

Network Latency (ms)

46

TEKNIKA, Volume 14(1), March 2025, pp. 41-46

ISSN 2549-8037, EISSN 2549-8045

Andjarwirawan, J.: Single Sign-On (SSO) Implementation Using Keycloak, RADIUS,

LDAP, and PacketFence for Network Access

DOI: 10.34148/teknika.v14i1.1089

only over secure channels (e.g., HTTPS). Attackers may

also create malicious apps that mimic legitimate ones,

tricking users into granting access to their data. Users

should be cautious about the permissions they grant and

ensure they trust the client before consenting. Short-lived

access tokens reduce the window of opportunity for

attacks. Additionally, refresh tokens should be securely

handled, and users should have the ability to revoke tokens

if suspicious activity is detected.

4. Session Management: Keycloak provides session

management features, allowing administrators to monitor

active sessions and revoke access when necessary.

5. Network Segmentation: Using VLANs to segment guest

and authenticated users on the network, ensuring that

unauthorized devices cannot access sensitive areas of the

network. Wireless access points under its controller, are

capable of running multiple VLANs.

VI. CONCLUSION

The implementation demonstrated robust performance

with minimal latency, even under high loads. Users

experienced a seamless login process, enhancing user

satisfaction. However, initial challenges such as session

timeouts and user redirection were mitigated by optimizing

configurations in Keycloak and PacketFence. The system

scalability was tested with up to 500 concurrent users,

showing stable performance under 30ms latency. Future work

could explore integration with cloud-based identity providers

and larger-scale deployments.

Combining PacketFence with FreeRADIUS and Keycloak

provides a powerful solution for managing Wi-Fi network

access with SSO capabilities. A single web portal will open

user’s access to not only Wi-Fi access but also the

organization’s web-based applications. By leveraging LDAP

for centralized identity management, this setup ensures that

both guest and regular users can securely authenticate via a

captive portal. Whether an application authenticates directly to

LDAP with FreeRadius or through PacketFence and Keycloak,

they will all authenticate to the same particular credentials.

With this configuration, educational institutions and

enterprises can easily manage and control network access

while providing a seamless user experience through SSO.

REFERENCES

[1] Krawczyk, H., & Pirogova, A. (2022). The role of

Identity Federation in Modern Network Architectures.

Journal of Network Security, 48(3), 101-115.

[2] Arnaud, F., & Leclerc, M. (2023). Dynamic Network

Access Control Using PacketFence: A Case Study.

Journal of Information Systems, 29(2), 65-78.

[3] Kovac, M., & Petrovic, J. (2021). Single Sign-On and

Identity Management with Keycloak. International

Journal of Cybersecurity, 34(5), 88-97.

[4] Smith, J., & Lee, A. (2023). Advances in SSO and

Identity Management. Cybersecurity Review, 52(1), 33-

47.

[5] Chen, P., & Zhao, L. (2022). Evaluating Open Source

NAC Solutions. Journal of Network Security, 49(2), 88-

99.

[6] Jones, R., & Ahmad, Z. (2022). Enhancing User

Experience in SSO Deployments. Network

Administration Journal, 28(5), 45-60.

