
9

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

Mochamad Rizal Fachrudin1*, Arif Saivul Affandi2

1,2Department of Information System, Faculty of Information Technology, Universitas Merdeka Malang, Malang,

East Java, Indonesia

E-mail: 1*mrizalf.email@gmail.com, 2fandi@unmer.ac.id

 (Received: 31 Oct 2024, revised: 12 Nov 2024, accepted: 13 Nov 2024)

Abstract

Containerization enables isolation within a host, with Docker being a popular tool for packaging applications and their

dependencies in container images. However, challenges like slow build processes and bloated image sizes can consume

resources, slow down builds, and pose security risks. This study optimizes Docker images by combining the Alpine base image

with multi-stage builds, analyzing size, build speed, and security across different combinations and environments to identify and

propose the most efficient combination solution. The approach used is a quantitative quasi-experiment with a within-subject

design. The sample used was a JavaScript framework, with the main experimental group being the combination of Alpine and

multi-stage builds, while the comparison group included combinations of Node and Node-Alpine, both in single-stage and multi-

stage configurations, as well as single-stage Alpine. Data was obtained from CI/CD, container registry, and Trivy reports.

Analyzed by descriptive analysis, One-Way ANOVA or Kruskal Wallis test, and post-hoc test. The results show that combining

multi-stage builds with Alpine is considered best practice because it produces the smallest image size, reducing it by up to 94%

compared to single-stage Node. It also achieves the shortest build times across all environments and presents low vulnerability

issues. However, it is important to note that while the Alpine multi-stage combination offers the most efficient build times, it

experiences a 1.3x increase in duration in low-spec environments.

Keywords: Optimization, Docker Image, Size, Building Time, Vulnerability.

I. INTRODUCTION

Containerization is a technological advancement that

enables system isolation within a host. Several

containerization technologies exist, such as Linux Containers

(LXC), Docker, and Podman. These technologies differ from

RunC and Containerd, as the latter are runtime engines used

to execute containers [1]. In research conducted by Tarasiuk

et al., LXC containerization technology yielded the best

results across several resource aspects, particularly in CPU

and memory performance, demonstrating its efficiency

compared to other technologies [2]. However, each of these

technologies has a different focus. For instance, LXC is used

for OS-level container virtualization, while Docker and

Podman are designed for application-level container

virtualization, with Docker offering the best performance in

image processing compared to the others [3]. Although

applications running on Podman have shown better

performance than those on Docker, Docker provides more

efficient resource utilization compared to Podman [4], [5].

According to a survey by the international forum

StackOverflow [6], Docker is the most popular container

technology in use today, and its flexibility in Dockerfile

configuration can also be applied to other application-level

container technologies like Podman, making it a suitable

technology for further discussion. With Docker, applications,

along with all their dependencies and environments, can be

packaged and run within a single container [7]. Docker also

ensures that applications run consistently across different

environments by creating a virtualized layer where the

application operates [8]. Additionally, Docker's container

technology provides ease and speed in the deployment

process, making it an ideal choice for implementation [9].

Docker provides a more advanced and lightweight

mechanism compared to hypervisor-based virtualization

software [10]. Due to the isolated nature of containerization,

Docker allows multiple applications to run simultaneously on

a single server, reducing the need for traditional servers and

lowering hardware costs [11]. With these numerous

advantages, the implementation of containerization using

Docker has become widespread, including in Indonesia. The

adoption of modern lifecycle practices such as DevSecOps is

10

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

another driving factor, as containerization is a key component

in the successful implementation of these practices.

However, in practice, since this technology uses images to

run containers, the main challenge, especially when using

Docker, is the large image size. Large images can increase

storage usage and slow down build times. By default, running

a Docker container requires pulling a base image from Docker

Hub, so the size of the base image used will also affect the

build speed [12]. Beyond base image size, the bloating of

Docker images is also caused by the scale of large projects

and the storage of unnecessary artifacts. As image sizes

increase, so does the potential for vulnerabilities, as more

dependencies or files with security risks may be packaged

within the container. This issue must be addressed before the

application is deployed since security is a critical aspect of any

application.

One approach to addressing this issue is using lightweight

base images, such as Alpine Linux [13]. Alpine Linux has

recently gained popularity due to its small size and strong

security features [14]. In a study by Tipantuña et al., using the

Alpine Linux base image successfully reduced resource usage

in a Raspberry Pi environment, while another study by Fava

et al. found that Alpine Linux provided 20% better memory

savings compared to Debian images [15], [16]. Another

approach demonstrated in a study by Badisa et al., utilized

multi-stage builds, successfully reducing image size by up to

97% [17]. The entire research has observed the approaches

separately, without conducting a deeper examination of image

processing by combining both approaches. However, Docker

itself is known to be superior to other container technologies

due to its fast image processing. Therefore, it is important to

conduct a more in-depth analysis of image processing,

considering both size and time, by combining the two

approaches previously employed. Additionally, it should be

examined whether combining these two approaches provides

greater efficiency compared to other combinations.

Furthermore, when combining these two approaches, it is

essential to evaluate whether the best results in terms of

security are still achieved, as reducing image size may also

lower vulnerability risks.

This research aims to optimize container images by

combining Alpine Linux as the base image with a multi-stage

build technique, and analyzing its efficiency by comparing the

images in terms of size, build time, and vulnerabilities across

various combinations and environmental conditions. The

approach used in this study is experimental, with descriptive

and statistical analysis to evaluate the results obtained. It is

hoped that this research will provide deeper insights into

Docker image optimization, particularly in terms of efficiency.

Furthermore, the findings are expected to offer solutions or

best practice recommendations for real-world cases and serve

as a reference for similar future research, contributing to the

development of literature in the fields of containerization and

image management, especially in the context of Docker.

II. RESEARCH METHOD

This research adopts a quantitative approach using a quasi-

experimental method with a within-subject design. This

design was chosen because the study only includes an

experimental group, with a non-random sample, followed by

a posttest or sequential testing after treatment. In this study,

optimization results from combining Alpine Linux with a

multi-stage build will be compared to various base image

combinations and other build methods. Node and Node-alpine

are the base images selected for comparison, with the default

Node image version chosen as it serves as the standard

runtime for Node.js applications. The Alpine version of Node,

as studied by Hakue et al., was selected because it effectively

reduces Docker image size and aligns with containerization

goals [18]. Thus, the Alpine Node image is appropriate as a

comparative group.

In this study, there is one main experimental group that

receives the optimization treatment using a combination of the

Alpine base image and multi-stage build, along with five

comparative experimental groups that receive treatments

using other combinations of base images and build methods

besides Alpine and multi-stage. Thus, a total of six

combinations will produce images that will be compared

based on aspects such as size, build speed, and vulnerability.

The research flow can be seen in Figure 1 below.

Figure 1. Research Flow

A. Problem Identification

This stage is crucial as it serves as the initial step in

identifying the problem and setting the focus of the discussion.

The problem formulation or focus of this research is to explore

how optimization can be achieved by combining Alpine Linux

with a multi-stage build and to analyze the outcomes by

comparing other base image and build method combinations.

The objective is to present applicable optimizations and

identify the most efficient combination in terms of image size,

build speed, and vulnerability issues.

B. Preparation

The initial preparation in this study involves determining

how optimization will be applied. Since Docker is used as the

containerization tool, optimization will be implemented in the

Dockerfile for all samples and base images using a multi-stage

approach to ensure fair results. The build process will use

Docker BuildKit, chosen for its speed and ability to leverage

caching, as well as its enhanced build performance through

efficient parallelization, caching, and layering [19], [20]. For

execution, the `no-cache` command will be applied to prevent

caching, and `docker system prune` will be used in CI/CD to

clear the cache after each build completes. This approach

allows the study to evaluate which treatment group achieves

the highest build speed when relying solely on BuildKit

11

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

layering. For the optimization implementation, each command

will be divided into multiple stages, allowing each layer to

leverage artifacts from previous layers or run in parallel to

minimize build time. Further details are provided in Figure 2

below.

Figure 2. Scheme of Optimization Implementation

Then, three back-end framework samples used Koa JS as

the most recommended framework, followed by Express JS as

a recommended framework, and Nest JS as a non-

recommended framework [21]. For the testing devices in this

study, one personal device belonging to the author and three

VMs built on different services with varying specifications

will be used, as shown in Table 1 below.

Table 1. Specification

Description Specification

Local Device Windows OS, 8GB RAM, 500GB

Storage, 4CPU

Runner 1 (Azure) Ubuntu OS, 16GB RAM, 32GB

Storage, 4vCPU

Runner 2 (Gitlab

Shared Runner)

Saas-linux-small-amd64, 8GB RAM,

30GB Storage, 2vCPU

Runner 3 (AWS) Ubuntu OS, 1GB RAM, 20GB

Storage, 2vCPU

With the differences in specifications and environments, it

is anticipated that the data obtained will provide deeper

insights, allowing for a more accurate analysis of the results.

C. Experiment

At this stage, implementation is carried out alongside data

collection. The data collected corresponds to the aspects of the

discussion topic, namely size, build time, and image

vulnerability issues. The data collection methods employed

include two testing methods and a literature review. In the

testing method, this stage will adopt a DevSecOps workflow.

Once the optimization implementation is applied, the code

will be pushed to the repository, which will automatically

trigger the CI/CD process. This CI/CD pipeline will run build

tests on each runner/ environment, perform security scanning,

and push the resulting image to the container registry. This

automation is crucial for avoiding errors, reducing repetitive

tasks, and speeding up the data collection process [22]. Build

time data will be collected five times at 90-minute intervals.

Security data will be gathered from security scanning using

Trivy, focusing on high and critical severity vulnerabilities.

Trivy was chosen because, in addition to being open-source

and supporting CI/CD, Trivy also utilizes the National

Vulnerability Database (NVD) published by the Security

Division of the National Institute of Standards and

Technology (NIST), ensuring that its scanning results comply

with the latest standards [23]. Furthermore, Trivy is widely

recognized as a standard SBOM (Software Bill of Materials)

generator used across various industries, offering well-

balanced and detailed vulnerability reporting for container

images, operating system packages, application

dependencies, and libraries, thereby ensuring thorough

security assessments [24], [25]. This feature will be

particularly useful, as multi-stage builds are closely tied to

application dependencies. Meanwhile, the image size results

will be obtained from the container registry after the image

push process is completed.

The literature review collection method is also conducted

to gather information from journals, books, and other scientific

articles that are relevant to the topic being discussed. The

information obtained can provide a foundational

understanding of the research, including implementable

workflows, best practices, and more. This approach ensures

that the research proceeds more systematically, yielding results

that are more precise and accurate.

D. Result Analysis

After all the data is collected, data analysis will be

conducted. The techniques used in data analysis include

descriptive analysis and various statistical tests, such as

classical assumption testing, difference testing, and advanced

testing, which provide a more detailed and in-depth

comparison of each combination. Descriptive analysis is

employed here to describe the results obtained from the

vulnerability issues, where the collected data is not numerical.

For numerical data, statistical tests will be performed,

including normality and homogeneity tests, as prerequisites for

conducting difference testing. The normality test used is the

Shapiro-Wilk test, which is suitable for small-scale data [26].

The homogeneity test applied is Levene's test, which is more

appropriate for assessing the homogeneity of population

variances [27]. The difference test will be conducted to

determine whether there is a significant difference among all

groups/combinations. Since six combinations are being

compared in this study, the appropriate test for detailed

calculations and determining the significance of differences

across several groups/combinations is One-Way ANOVA,

assuming the data meet the assumptions of normality and

homogeneity and the Kruskal-Wallis test will be used as an

alternative if the normality assumption is not met. In addition

to identifying the most efficient combination and examining

the significance of differences between all combinations, this

test will also serve as the basis for conducting subsequent post-

hoc tests. The post-hoc tests will be used to determine the

significance of differences when comparing each

group/combination one by one. All calculations and analyses

of the numerical data were conducted using IBM SPSS

12

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

Statistics software to facilitate and enhance the accuracy and

efficiency of the data analysis process.

E. Conclusion

In the conclusion phase, an overview of the analysis results

and findings will be presented. This will help determine

whether the optimization combination of Alpine Linux and

multi-stage build yields the best results. This stage will also

outline the findings and recommendations based on those

findings. It is hoped that readers will be able to assess their

needs according to the case studies presented or even explore

further based on the findings discussed.

III. RESULTS AND DISCUSSIONS

The optimization implementation, by the previously

designed scheme, is carried out in a Dockerfile divided into

four stages. In the first stage, the Alpine base image is

downloaded, and a working directory is created. Next, NPM is

installed to globally install PNPM, using the `no-cache` tag to

prevent cache storage. Then, the package.json and pnpm-

lock.yml files are copied to the working directory. For further

details, please refer to Pseudocode 1.

Pseudocode 1. Stage Base
1.# Stage 1: Base

2.FROM alpine: x.xx.x AS base

3.WORKDIR /app

4.RUN apk add --no-cache npm && npm

install -g pnpm

5.COPY package.json pnpm-lock.yaml ./

The second stage involves the project build process, using

the first stage as a foundation. Development dependencies are

installed, the project is copied, and the build is executed. The

details of the second stage can be found in Pseudocode 2.

Pseudocode 2. Stage Build
6.# Stage 2: Build

7.FROM base AS build

8.WORKDIR /app

9.RUN pnpm install --frozen-lockfile --

prefer-frozen-lockfile

10.COPY . .

11.RUN pnpm run build

In the third stage, production dependencies will be installed

to ensure that only those dependencies are used in the

subsequent stages. Like the second stage, this one is also run

in parallel after the first stage is completed. For further details

about the third stage, please refer to Pseudocode 3.

Pseudocode 3. Stage Deps
12.# Stage 3: Deps Production

13.FROM base AS deps-prod

14.WORKDIR /app

15.RUN pnpm install --prod --frozen-

lockfile --prefer-frozen-lockfile

In the final stage, the Alpine image is used to install

Node.js, create a working directory, and copy the results from

the second and third stages. After that, the project is run with a

non-root user. For further details, please refer to Pseudocode

4.

Pseudocode 4. Stage Production
16.# Stage 4: Production

17.FROM alpine:x.xx.x AS production

18.RUN apk add --no-cache nodejs && rm

-rf /var/cache/apk/*

19.WORKDIR /app

20.COPY --from=deps-prod

/app/node_modules ./node_modules

21.COPY --from=build /app/dist ./dist

22.EXPOSE 3000

23.RUN addgroup -S appgroup && adduser

-S appuser -G appgroup

24.USER appuser

25.CMD ["node", "dist/main.js"]

Then, the Dockerfile configuration is built using Docker

BuildKit with the `no-cache` tag and applied to each sample in

every runner. When the tests are executed, a CI/CD pipeline

workflow will run as shown in Figure 3 below.

Figure 3. CI/CD Workflow

In the above figure, there are three stages, build, test, and

push. In the first stage, three jobs will run to perform the build

on the three runners, followed by stage two, which conducts

security scanning using Trivy. The final stage is for pushing to

the container registry.

A. Analysis of Images Size

In the first analysis, the sizes of the obtained images are

compared in terms of size and percentage reduction across all

treatments and samples. The percentage reduction in image

size is calculated using the largest value as a reference, which

corresponds to the base image of the single-stage Node. The

results of the percentage reduction can be seen in Table 2

below.

Table 2. Images Size Reduction Percentage

Sample Combination
Size

(MB)
Reduced

Koa Node Single Stage 401.45 0.00%

 Node Multi Stage 386.08 3.80%

 Node-alpine Single Stage 67.06 83.30%

13

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

Sample Combination
Size

(MB)
Reduced

 Node-alpine Multi Stage 51.69 87.10%

 Alpine Single Stage 42.57 89.40%

 Alpine Multi Stage 24.10 94.00%

Express Node Single Stage 405.10 0.00%

 Node Multi Stage 386.07 3.80%

 Node-alpine Single Stage 70.71 82.40%

 Node-alpine Multi Stage 51.67 87.10%

 Alpine Single Stage 46.22 88.50%

 Alpine Multi Stage 24.09 94.00%

Nest Node Single Stage 425.29 0.00%

 Node Multi Stage 387.57 3.50%

 Node-alpine Single Stage 90.90 77.40%

 Node-alpine Multi Stage 53.18 86.80%

 Alpine Single Stage 66.41 83.50%

 Alpine Multi Stage 25.60 93.60%

From the image size results, it is evident that the

combination of Alpine Linux and multi-stage builds provides

the highest percentage reduction, reaching approximately 94%

based on the largest value of each sample. A sufficiently high

and satisfactory percentage was observed in terms of size. To

conduct a deeper analysis of the significance of the differences

among all combinations, a normality test must first be

performed as a prerequisite. The results of the normality test

are presented in Table 3.

Table 3. Normality of Images Size

Combination
Shapiro-Wilk

Statistic df Sig

Node Single Stage .693 15 <.001

Node Multi Stage .607 15 <.001

Node-alpine Single Stage .693 15 <.001

Node-alpine Multi Stage .611 15 <.001

Alpine Single Stage .693 15 <.001

Alpine Multi Stage .607 15 <.001

The results above indicate that all combinations have a

non-normal data distribution, with a p-value (Sig) of less than

0.001, which is below the 0.05 threshold. Because the

normality assumption was not met, the parametric One-Way

ANOVA test was not used, and the non-parametric Kruskal-

Wallis test was applied instead. The significance value from

the Kruskal-Wallis test is shown in Table 4 below.

Table 4. Kruskal-Wallis of Images Size

Test Statisticsa,b

 Images Size

Kruskal-Wallis H 64.169

Df 5

Asymp. Sig. <.001

It is noted that there is a significant difference between the

combinations/groups, with a significance value (Asymp. Sig)

of 0.001, which is below the 0.05 threshold. This indicates a

highly significant result. When each combination was

compared individually using the post-hoc test, a pairwise

comparison diagram was produced, as shown in Figure 4

below.

Figure 4. Pairwise Comparison of Images Size

According to the post-hoc test results, the Alpine multi-

stage combination ranked first as the combination that

produced the smallest image size, with a mean rank score of

8.00. This was followed by Alpine single-stage, Node-Alpine

multi-stage, Node-Alpine single-stage, Node multi-stage, and

finally Node single-stage. Although comparisons indicate that

the Alpine multi-stage combination does not show a significant

difference compared to the Alpine single-stage and Node-

Alpine multi-stage, as indicated by the red line, this

combination still provides the best results. This is because, in

practice, companies using container technologies like Docker

often run multiple applications within a single VM, which can

become problematic if even a simple JavaScript application

consumes hundreds of megabytes of storage. When many

applications need to be run, companies must allocate

substantial storage space, which can be challenging for both

small and large companies. Therefore, implementing the

Alpine multi-stage combination provides the best solution for

saving storage space, as even when compared to the Node

version of Alpine with multi-stage, the Alpine multi-stage

combination still results in the most efficient image size.

B. Analysis of Building Time

In the analysis of build time, before further analyzing and

comparing with post-hoc tests, the normality assumption must

be met. After performing the normality test using the Shapiro-

Wilk test, the results are presented in Table 5.

Table 5. Normality of Building Time

Runner Combination
Shapiro-Wilk

Statistic df Sig

Azure Node Single Stage .855 15 .020

Node Multi Stage .785 15 .002

Node-alpine Single

Stage

.799 15 .004

Node-alpine Multi

Stage

.812 15 .005

Alpine Single Stage .827 15 .008

14

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

Runner Combination
Shapiro-Wilk

Statistic df Sig

Alpine Multi Stage .746 15 <.0

01

Gitlab

Share

Runner

Node Single Stage .857 15 .022

Node Multi Stage .775 15 .002

Node-alpine Single

Stage

.789 15 .003

Node-alpine Multi

Stage

.793 15 .003

Alpine Single Stage .839 15 .012

Alpine Multi Stage .774 15 .002

AWS Node Single Stage .921 15 .198

Node Multi Stage .814 15 .006

Node-alpine Single

Stage

.836 15 .011

Node-alpine Multi

Stage

.767 15 .001

Alpine Single Stage .840 15 .012

Alpine Multi Stage .755 15 .001

It was found that almost all data exhibit a non-normal

distribution, with results (Sig) less than 0.05 in each testing

runner. Therefore, the subsequent analysis was conducted

using the non-parametric Kruskal-Wallis test, yielding the

following results in Table 6.

Table 6. Kruskal-Wallis of Building Time

Runner
Test Statisticsa,b

 Building Time

Azure Kruskal-Wallis H 63.530

Df 5

Asymp. Sig. <.001

Gitlab

Share

Runner

Kruskal-Wallis H 64.169

Df 5

Asymp. Sig. <.001

AWS Kruskal-Wallis H 40.979

Df 5

Asymp. Sig. <.001

From the table above, the build times for all runners show

significant differences across all groups/combinations, with an

Asymp.Sig value of < 0.001, which is below 0.05. Therefore,

when comparing each combination individually using the post-

hoc test in the first runner, Azure, with the highest

specifications, the pairwise comparison diagram is shown in

Figure 5 below.

Figure 5. Pairwise Comparison of Azure Building Time

Based on the results above, the Alpine multi-stage

combination obtained the lowest mean rank score, representing

the shortest duration, with a score of 19.90, followed by Node-

Alpine multi-stage, Alpine single-stage, Node-Alpine single-

stage, Node multi-stage, and last Node single-stage. Although

the Alpine multi-stage combination did not show significant

differences compared to three other combinations including

Node-Alpine multi-stage, Alpine single-stage, and Node-

Alpine single-stage, it still proved to be the most efficient in

terms of build time in this runner. For the comparison of

combinations in the second runner or environment, the GitLab

Shared Runner with medium specifications, the pairwise

comparison diagram is shown in Figure 6 below.

Figure 6. Pairwise Comparison of Gitlab Building Time

In the results from the second runner, which has medium

specifications, the Alpine multi-stage combination still holds

the top position as the most efficient combination, with the

ranking order remaining the same as in the results from the

previous runner. Although the significance comparison

between combinations remains consistent, the mean rank score

slightly decreases but stays around ±19.00. In the last runner,

AWS, which has the lowest specifications, a pairwise

comparison diagram from the post-hoc test is shown in Figure

7 below.

15

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

Figure 7. Pairwise Comparison of AWS Building Time

In this runner, based on the results above, the Alpine multi-

stage combination consistently remains the most efficient,

achieving the lowest mean rank score compared to other

combinations. The build duration ranking is also the same as

before, with Alpine multi-stage in first place, followed by

Node-Alpine multi-stage, Alpine single-stage, Node-Alpine

single-stage, Node multi-stage, and lastly, Node single-stage.

The significant comparison results are also similar, where the

Alpine multi-stage combination across all three runners shows

no significant difference compared to Node-Alpine multi-

stage, Alpine single-stage, and Node-Alpine single-stage, as

indicated by the red line.

However, in this runner, it was noted that the mean rank

score for the Alpine multi-stage combination increased to

25.30, approximately 1.3 times higher than in the previous

runner. This increase only occurred in the runner with the

lowest specifications, indicating that runner specifications

have a significant impact and should be carefully considered

when choosing the Alpine multi-stage combination.

Interestingly, in the low-specification AWS runner, Node

multi-stage showed a decrease in the mean rank score,

resulting in 8 combinations without significant differences, up

from 7 combinations in the other two runners.

Overall, the Alpine multi-stage combination still provides

the most efficient build duration compared to other

combinations, and this result is consistent across different

runners. Therefore, the Alpine multi-stage combination is the

best choice for companies or organizations that implement

agile development cycles. This speed improvement boosts

team productivity in application development by enabling

faster feedback through rapid application releases. For

commercial companies, this has a positive impact by meeting

the need for fast application releases. In organizations

applying DevOps or DevSecOps life cycles, this combination

brings efficiency to the entire CI/CD process. However,

considering runner specifications remains important based on

previous findings.

C. Analysis of Vulnerability Issues

In the security scanning report results with Trivy, the

findings are divided into two parts, the base image layer and

the application layer. The results of the security scanning for

the base image layer are as follows in Table 7.

Table 7. Results of the Security Scan on Image Layers

Level Node Node-alpine Alpine

High 93 Vulnerability - -

Critical 14 Vulnerability - -

Based on the results above, it is evident that high and

critical vulnerabilities are present only in the base Node image,

unlike the Node-alpine and Alpine images, which do not have

high or critical-level vulnerabilities. The absence of

vulnerabilities significantly reduces the risk of exploitation and

conflicts within the container. Fourteen critical vulnerabilities

found in the Node image include packages such as CVE-2024-

32002 in git, CVE-2023-6879 in libaoem3, CVE-2024-45490

in libexpat, CVE-2023-5841 in libopenexr, CVE-2024-38428

in wget, and CVE-2023-45853 in zlib. All of these packages

pose significant security risks, as these vulnerabilities could

allow attackers to execute remote malicious code, corrupt data,

or cause system issues. Furthermore, these problems could

disrupt the application services running within the container.

Therefore, it is crucial to choose an image with minimal

vulnerability risks, such as the Node-alpine or Alpine images.

The results of the application layer scan are presented in Table

8 below.

Table 8. Results of the Security Scan on Application Layers

Method Sample Package Level VulnID

Single

Stage

Koa path-to-

regexp

HIGH CVE-2024-

45296

Express body-

parser

HIGH CVE-2024-

45590

path-to-

regexp
HIGH

CVE-2024-

45296

Nest body-

parser

HIGH CVE-2024-

45590

path-to-

regexp

0.1.7

HIGH CVE-2024-

45296

path-to-

regexp

3.1.2

HIGH CVE-2024-

45296

Multi

Stage

Koa path-to-

regexp

HIGH CVE-2024-

45296

Express body-

parser

HIGH CVE-2024-

45590

path-to-

regexp

HIGH CVE-2024-

45296

Nest body-

parser

HIGH CVE-2024-

45590

path-to-

regexp

0.1.7

HIGH CVE-2024-

45296

path-to-

regexp

3.1.2

HIGH CVE-2024-

45296

Based on the results above, no significant difference was

found between single-stage and multi-stage builds. The Koa

16

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

sample had 1 high-severity vulnerability, the Express sample

had 2 high-severity vulnerabilities, and the Nest sample had 3

high-severity vulnerabilities, with 2 of them present in the

same package but in different versions. Although using a

multi-stage build is expected to reduce vulnerabilities in

development dependencies by isolating them and only

including production dependencies in the final image, this

benefit was not observed in the samples tested. This is due to

the default or simplified configurations and the limited

number of dependencies, leading to no notable difference

between single-stage and multi-stage builds in terms of

vulnerability detection, with only 2 types of vulnerable

packages identified. Thus, when applied to a larger scale, the

results are likely to differ. However, even with only 2 types of

vulnerabilities, the vulnerabilities in the body-parser and

regex packages are significant because they can cause Denial

of Service (DoS) attacks, posing the risk of slowing down the

server or causing it to hang. Therefore, developers must

address such vulnerabilities as early as possible to prevent

potential future threats.

Using an Alpine base image in combination with a multi-

stage build allows developers to focus more on application-

layer vulnerabilities, such as the 2 detected package

vulnerabilities mentioned earlier. Alpine image has proven to

provide better security, as shown in the previous results where

no high or critical vulnerabilities were found. Furthermore, as

applications grow larger and more complex, combining multi-

stage builds can help reduce vulnerabilities in development

dependencies at the application level. This approach is

essential and can become a best practice, as in real-world

scenarios, application performance and security have a direct

impact on a company's operations and reputation, especially

for large enterprises. The release process for applications and

new features can also proceed faster due to the reduced

number of unnecessary vulnerabilities, ensuring that the

product released is more stable and reliable. For companies

adopting modern lifecycles such as DevSecOps, where

security is integrated into every stage of the development

cycle, this approach supports more responsive and secure

development.

D. Comparison of Research Findings

The findings of this research largely align with and support

previous studies, with some reinforcing existing conclusions

and others providing new perspectives. In a study by C.

Tipantuña et al. [15], the use of Alpine was found to

successfully save storage resources, which is further

supported by findings that Alpine-based images have the

smallest size. Additionally, research by Haque et al. [18]

found that the Alpine and Node base images are secure with

zero vulnerabilities. This finding is reinforced by results

indicating that both images do not have any high or critical-

level vulnerabilities. Another study by N. Badisa et al. [17]

revealed that using multi-stage builds can reduce image size

by up to 97%. This finding is supported by the results of this

research, which show that multi-stage builds can reduce

image size compared to single-stage builds, although the

reduction is only in the range of 3% to 10%, depending on the

base image used. This study also proves that combining the

Alpine Linux base image with multi-stage builds results in the

most efficient build duration compared to various other

combinations of Node and Node-alpine base images. This is

evidenced by build duration tests on the three JavaScript

framework samples, where the duration of the combination of

Alpine with multi-stage consistently yielded the lowest mean

rank compared to other combinations. However, it should be

noted that this combination can result in longer build

durations on virtual machines with lower specifications.

This consideration is important when implementing it in

real-world company scenarios, as companies may not always

allocate high-specification virtual machines. On the other

hand, this study also found that the Node-alpine image with

multi-stage builds had a faster build time compared to the

single-stage Alpine image, even though the Alpine base image

is smaller than Node-alpine. This result was consistent across

all testing environments. These findings reinforce the

statement by Changyuan et al. [14] that smaller image size is

a best practice, but it must be accompanied by the application

of appropriate technologies and instructions, such as the use

of multi-stage builds and BuildKit. Erdenebat et al. [20]

research demonstrated that BuildKit can achieve efficient

results, which is supported by this study through the use of

parallel instructions and efficient layering, allowing the Node-

alpine multi-stage image to surpass the build speed of the

single-stage Alpine image. From this, it can be concluded that

utilizing multi-stage builds and BuildKit can accelerate the

image build process.

IV. CONCLUSION

The use of Docker image optimization by combining

Alpine with multi-stage builds is considered a best practice.

This approach results in optimal size efficiency, achieving up

to a 94% reduction compared to the Node single-stage setup,

and provides the fastest build time when compared to other

combinations, including Node or Node-alpine in both single-

stage and multi-stage build, as well as the Alpine single-stage

configuration. This result is supported by statistical tests,

which showed the lowest mean rank scores across all

environments, with 19.90 in Azure, 19.43 in the GitLab Shared

Runner, and 25.30 in AWS. These scores consistently

represent the lowest mean ranks among all tested

combinations. Although the differences are not significant, this

approach is still highly recommended. Alpine also

demonstrates zero high and critical vulnerability issues, unlike

Node, which has more vulnerabilities. However, the

specifications of the built environment also play a crucial role,

as the Alpine multi-stage combination experienced an increase

in duration of up to 1.3 times in AWS, even though it remains

overall more efficient in build duration.

Based on these findings, the author hopes that future

research will explore the combination of Alpine with multi-

stage builds in larger-scale deployments within Kubernetes,

Nomad, or Docker Swarm environments, and also investigate

17

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

the performance aspect of handling client requests by

comparing this combination with other approaches.

REFERENCES

[1] P. Muzumdar, A. Bhosale, G. P. Basyal, and G. Kurian,

“N v h E y m: A C m h v

T x my v y,” Asian Journal of Research in

Computer Science, vol. 17, no. 1, pp. 42–61, 2024, doi:

10.9734/ajrcos/2024/v17i1411.
[2] . T , . T z , K. z z , . ń, J.

 m ł , “ m v

containerization and virtualization solutions using a

 y h b hm ,” Journal of Computer Sciences

Institute, vol. 32, pp. 157–162, 2024, doi:

10.35784/jcsi.6231.

[3] O. I. A q , A. Ş m T , T. K m z,

“ m A y C T h

C m V A E v ,” IEEE

Access, vol. 12, pp. 41852–41869, 2024, doi:

10.1109/ACCESS.2024.3376570.

[4] I. . A. E m I. . R h j , “N .j

Performance Benchmarking and Analysis at Virtualbox,

Docker, and Podman Environment Using Node-Bench

 h ,” JOIV : International Journal on Informatics

Visualization, vol. 7, p. 2240, Dec. 2023, doi:

10.30630/joiv.7.4.01762.

[5] C. Mukmin, T. Naraloka, and Q. H. Andriyanto,

“Analisis Perbandingan Kinerja Layanan Container As

A Service (CAA) K  : m ,”

Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 08, no. 2,

pp. 152–161, 2021, doi:

http://dx.doi.org/10.20527/klik.v8i2.

[6] Ov w, “T h y | 2024 Ov w

 v v y.” A : O . 07, 2024. [O].

Available:

https://survey.stackoverflow.co/2024/technology/

[7] A. R. E A. . A , “ m y

cloud computing dan docker container untuk

m j w b,” Journal of

Information System and Application Development, vol.

1, no. 2, pp. 138–147, 2023, doi:

10.26905/jisad.v1i2.11084.

[8] A. M. Potdar, N. D G, S. Kengond, and M. M. Mulla,

“ m Ev C

V h ,” Procedia Comput Sci, vol. 171, pp.

1419–1428, 2020, doi:

https://doi.org/10.1016/j.procs.2020.04.152.

[9] . y . , “Penerapan Docker

Container Guna Mempermudah Deployment Dan

Maintenance Aplikasi Web (Studi Kasus PT.Gogomedia

Visindo),” Jurnal Sistem Informasi dan Teknologi

Informatika, vol. 1, no. 1, pp. 37–49, 2023.

[10] S. Dwiyatno, E. Rachmat, A. P. Sari, and O. Gustiawan,

“Implementasi Virtualisasi Server Berbasis Docker

Container,” PROSISKO: Jurnal Pengembangan Riset

dan Observasi Sistem Komputer, vol. 7, no. 2, pp. 165–

175, 2020, doi: 10.30656/prosisko.v7i2.2520.

[11] R. Felani, M. N. Al Azam, D. P. Adi, A. Widodo, and

A. . G m , “O m z V R

 m U C A ,”

IJCCS (Indonesian Journal of Computing and

Cybernetics Systems), vol. 14, no. 3, p. 319, 2020, doi:

10.22146/ijccs.57565.

[12] S. Gholami, H. Khazaei, and C.- . z m , “ h

you Upgrade Official Docker Hub Images in Production

E v m ?,” 2021 IEEE/ACM 43rd International

Conference on Software Engineering: New Ideas and

Emerging Results (ICSE-NIER), Institute of Electrical

and Electronics Engineers, 2021, pp. 101–105. doi:

10.1109/ICSE-NIER52604.2021.00029.

[13] N. Zhao et al., “L -Scale Analysis of Docker Images

and Performance Implications for Container Storage

 y m ,” IEEE Transactions on Parallel and

Distributed Systems, vol. 32, no. 4, pp. 918–930, 2021,

doi: 10.1109/TPDS.2020.3034517.

[14] C. L , . N , H. Kh z , “A L -scale Data

Set and an Empirical Study of Docker Images Hosted on

 H b,” 2020 IEEE International Conference

on Software Maintenance and Evolution (ICSME),

Institute of Electrical and Electronics Engineers, 2020,

pp. 371–381. doi: 10.1109/ICSME46990.2020.00043.

[15] C. Tipantuña, A. Yazán, and J. Carvajal-Rodriguez,

“C -Based Network Services Deployment: A

 A h,” Enfoque UTE, vol. 15, no. 1, pp.

36–44, 2024, doi: 10.29019/enfoqueute.1005.

[16] F. B. Fava et al., “A h m

in Docker Containers for Microservice-Based

A h ,” 2024 32nd Euromicro International

Conference on Parallel, Distributed and Network-Based

Processing (PDP), Institute of Electrical and Electronics

Engineers, 2024, pp. 137–142. doi:

10.1109/PDP62718.2024.00026.

[17] N. Badisa, J. K. Grandhi, L. Kallam, M. R. Eda, S.

N , . , “E Im

Optimization using Multi-Stage Builds and Nginx for

E h A ym ,” 2023. :

10.21203/rs.3.rs-3276965/v1.

[18] . U. H q . A. b , “W H

Done: An Empirical Study of Exploitability & Impact of

Base-Im V b ,” 2022 IEEE

International Conference on Software Analysis,

Evolution and Reengineering (SANER), Institute of

Electrical and Electronics Engineers, 2022, pp. 1066–

1077. doi: 10.1109/SANER53432.2022.00124.

[19] , “ | K .” A : J . 22,

2024. [Online]. Available:

https://docs.docker.com/build/buildkit/

[20] . E b T. K z , “C m v A y

C h : A m Ev ,”

in 2024 47th MIPRO ICT and Electronics Convention

(MIPRO), Institute of Electrical and Electronics

Engineers, 2024, pp. 1960–1966. doi:

10.1109/MIPRO60963.2024.10569255.

18

TEKNIKA, Volume 14(1), March 2025, pp. 9-18

ISSN 2549-8037, EISSN 2549-8045

Fachrudin, M. R. et al.: Implementation and Analysis of Container Image Optimization

Using Alpine Linux and Multi-Stage Builds

DOI: 10.34148/teknika.v14i1.1118

[21] I. . A. E m , “ j m L m

Back-End JavaScript Framework Menggunakan Metode

GET O T,” Jurnal RESTI (Rekayasa Sistem dan

Teknologi Informasi), vol. 4, no. 6, p. 1216, Dec. 2020,

doi: 10.29207/resti.v4i6.2675.

[22] R. D. Marcus, A. S. Ilmananda, L. Indana, and H. A.

A w , “O m j m J

Laboratorium Komputer Melalui Implementasi Remote

I v ,” Jurnal MediaTIK, vol. 6, no. 3,

pp. 79–85, 2023, doi:

https://doi.org/10.26858/jmtik.v6i3.51964.

[23] . R. E. , “Adopsi Devsecops Untuk

Mendukung Metode Agile Menggunakan Trivy Sebagai

Security Scanner Docker Image Dan Dockerfile,”

Jurnal Indonesia : Manajemen Informatika dan

Komunikasi, vol. 4, no. 3, pp. 856–863, 2023, doi:

10.35870/jimik.v4i3.291.

[24] . Y , W. , X. H , H. Y , “O h C

of Metadata-Based SBOM Generation: A Differential

A y A h,” 2024 54th Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks (DSN), Institute of Electrical and Electronics

Engineers Inc., 2024, pp. 29–36. doi:

10.1109/DSN58291.2024.00018.

[25] S. H. Majumder, S. Jajodia, S. Majumdar, and M. S.

H , “L y y A y C

Images: Expanding Lightweight Pre-Deployment

 ,” 2023 20th Annual International

Conference on Privacy, Security and Trust (PST),

Institute of Electrical and Electronics Engineers, 2023,

pp. 1–10. doi: 10.1109/PST58708.2023.10320152.

[26] G.- m , “Pentingnya Uji Asumsi Klasik Pada

Analisis Regresi Linier Berganda,” BAREKENG: Jurnal

Ilmu Matematika dan Terapan, vol. 14, no. 3, pp. 333–

342, 2020, doi: 10.30598/barekengvol14iss3pp333-342.

[27] R. , “Uj h m b y j

 ,” Jurnal Pendidikan, Sains Sosial, dan Agama,

vol. 8, no. 1, pp. 386–397, 2022, doi:

10.53565/pssa.v8i1.507.

