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Abstract 

 
Facial recognition systems are pivotal in modern applications such as security, healthcare, and public services, where accurate 

identification is crucial. However, environmental factors, transmission errors, or deliberate obfuscations often degrade facial 

image quality, leading to misidentification and service disruptions. This study employs Generative Adversarial Networks 

(GANs) to address these challenges by reconstructing corrupted or occluded facial images with high fidelity. The proposed 

methodology integrates advanced GAN architectures, multi-scale feature extraction, and contextual loss functions to enhance 

reconstruction quality. Six experimental modifications to the GAN model were implemented, incorporating additional residual 

blocks, enhanced loss functions combining adversarial, perceptual, and reconstruction losses, and skip connections for improved 

spatial consistency. Extensive testing was conducted using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 

(SSIM) to quantify reconstruction quality, alongside face detection validation using SFace. The final model achieved an average 

PSNR of 26.93 and an average SSIM of 0.90, with confidence levels exceeding 0.55 in face detection tests, demonstrating its 

ability to preserve identity and structural integrity under challenging conditions, including occlusion and noise.  The results 

highlight that advanced GAN-based methods effectively restore degraded facial images, ensuring accurate face detection and 

robust identity preservation. This research provides a significant contribution to facial image processing, offering practical 

solutions for applications requiring high-quality image reconstruction and reliable facial recognition. 

 

Keywords: Facial Recognition Systems, Image Reconstruction, Generative Adversarial Networks (GANs), PSNR, SSIM. 

 

 

 

 
I. INTRODUCTION 

 The human face is a crucial aspect of personal identity, 

communication, and social interaction. It conveys emotions, 

intentions, and identity-related information that are essential 

for both personal and professional engagements [1]. In modern 

society, facial recognition technology plays a pivotal role in 

various domains, including security systems, healthcare 

diagnostics, forensics, digital communication, and access to 

public facilities [1][2][3]. For example, facial recognition is 

widely used in airports for identity verification, in mobile 

devices for unlocking and authorization, and in smart city 

infrastructures for enhancing security and personalized 

services. Given this reliance on facial imagery, maintaining the 

quality, integrity, and completeness of facial images is vital for 

accurate identification and smooth access to these essential 

services [4]. 

 However, facial images are frequently corrupted, 

degraded, or intentionally obfuscated due to various factors 

[5]. These can include environmental conditions (e.g., poor 

lighting, motion blur, or noise), data compression during 

transmission, and deliberate occlusions to protect privacy or 

conceal identity (e.g., masks, objects, or partial censorship) [6]. 

Such distortions degrade the quality of facial images and 

impede accurate identification, reducing the effectiveness of 

systems that rely on facial data [7]. In particular, failures in 

facial recognition can lead to denied access to critical services 
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such as healthcare facilities, transportation hubs, financial 

transactions, and secure building entry systems, posing both 

practical and security-related challenges [8][9]. For individuals 

who depend on these systems for daily activities, any 

disruption caused by image corruption can significantly hinder 

their ability to access services, thereby emphasizing the 

urgency of developing robust reconstruction solutions. 

 Existing approaches to facial image reconstruction often 

face significant limitations. Traditional image processing 

techniques struggle to restore facial details with high accuracy, 

especially when large portions of the image are corrupted or 

occluded [10]. Even advanced deep learning models, while 

effective in certain scenarios, frequently produce 

reconstructions with noticeable artifacts, loss of fine-grained 

features, or inconsistencies in global structure. For example, 

many methods fail to account for the semantic and contextual 

relationships between facial features, leading to outputs that 

are unrealistic or unfit for reliable facial recognition [11]. 

Furthermore, current GAN-based methods often prioritize 

visual realism over identity preservation, which is critical for 

applications involving security and identity verification. These 

limitations highlight the need for more robust and specialized 

reconstruction techniques that can address both visual quality 

and identity consistency in challenging scenarios. 

 Generative Adversarial Networks (GANs) have emerged 

as a revolutionary tool in the realm of image processing, 

particularly for tasks involving image inpainting and 

reconstruction [12][13]. By leveraging the adversarial 

framework of a generator and discriminator, GANs can 

produce highly realistic and coherent images that fill in 

missing details or correct distortions [14]. In the context of 

facial image reconstruction, GANs are particularly promising 

due to their ability to model intricate facial structures, textures, 

and identity-specific features [15][16]. This capability allows 

GANs to restore images in ways that preserve the subject's 

unique identity while maintaining global coherence, even 

when substantial portions of the image are corrupted or 

missing. 

 Recent advancements in GAN architectures have 

significantly enhanced their performance [17][18]. Techniques 

such as attention mechanisms allow the model to focus on 

critical regions of the face, ensuring that important features like 

eyes, nose, and mouth are accurately reconstructed [19]. Multi-

scale feature extraction helps in capturing both fine-grained 

details and broader contextual patterns, improving the overall 

quality and realism of the reconstructed image [20]. 

Additionally, the use of contextual losses ensures that the 

output maintains semantic consistency with the original image, 

reducing artifacts and producing smoother results. 

 The urgency for developing advanced GAN-based 

techniques for facial image reconstruction is further 

heightened by the increasing integration of facial recognition 

in public infrastructure [21][22]. Airports, government 

buildings, healthcare institutions, and financial services are 

adopting facial recognition technologies to streamline access 

control, improve security, and enhance user experience. In 

such settings, a corrupted or incomplete facial image can lead 

to misidentification, delays, or complete denial of access. For 

example, in healthcare, failure to verify a patient’s identity can 

result in incorrect treatment or delayed care. In airports, an 

inability to match a traveler’s face to their identity records can 

disrupt travel plans and compromise security protocols. 

Therefore, improving the robustness and accuracy of facial 

image reconstruction systems is crucial to ensuring reliable 

and seamless access to these services. 

 Moreover, face recognition technology supports adaptive 

control systems in autonomous electric vehicles by enabling 

real-time detection of driver or passenger emotions and 

behaviors [23]. This capability allows the vehicle to respond 

proactively to specific situations, such as adjusting 

environmental settings for comfort or issuing warnings in case 

of unsafe actions. Furthermore, the integration of face 

recognition enhances fleet management systems, enabling 

precise access control and usage tracking for shared or 

commercial autonomous vehicles 

 This paper focuses on leveraging and improving GAN-

based techniques to address these challenges by reconstructing 

partially corrupted or occluded facial images. The primary 

objective is to achieve visually realistic reconstructions that not 

only enhance the quality of the images but also preserve 

identity-specific features necessary for accurate recognition. 

By addressing issues such as artifact removal, noise reduction, 

and global coherence, this work aims to contribute to the 

broader field of computer vision, particularly in applications 

that depend on facial recognition for identity verification and 

secure access. 

 

 

II. RESEARCH METHODOLOGY 

 
Figure 1. Process Architecture 

 

The proposed method as shown in Figure 1 follows a 

systematic process for facial image reconstruction using 

Generative Adversarial Networks (GANs). The workflow 

begins with dataset creation, which is split into training and 

testing sets. During the training phase, the GAN model is 

optimized by minimizing the Generator Loss and 

Discriminator Loss. After training, the model is saved in .h5 

format. 

The trained model is then evaluated on the test dataset to 

produce predicted images. The quality of the reconstructions 

is assessed using metrics such as PSNR (Peak Signal-to-Noise 

Ratio) and SSIM (Structural Similarity Index Measure). 
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Additionally, six model modifications are applied to enhance 

performance throughout the process. 

The reconstructed facial images are further evaluated to 

determine whether the faces are accurately detected and 

compared to the ground truth. This evaluation is conducted 

using a pre-trained face recognition model, such as SFace 

[24], which generates facial embeddings for both the 

reconstructed and original images. 

 

A. Dataset Preparation  

 In this study, we utilized the CelebA dataset for training 

and evaluating the GAN model as shown in Figure 2. The 

CelebA dataset contains over 200,000 facial images with 

diverse attributes, making it suitable for tasks involving facial 

image reconstruction [21]. 

 

 

 

 
              groundtruth occluded groundtruth occluded 

Figure 2. Paired Dataset 

 

A total of 1,000 images were selected, comprising 500 

occluded images paired with 500 ground-truth images for 

model training. Additionally, a subset of 200 images was 

reserved for testing. The test set consists of images previously 

encountered by the model during training to evaluate its 

reconstruction performance on familiar data. This approach 

ensures consistency in assessing the model's ability to restore 

corrupted facial images while maintaining identity-specific 

features. 

 

B. Model Development Modification Experiment 

 Generative Adversarial Networks (GANs) are a type of 

deep learning framework that specializes in generating realistic 

data, particularly images, by leveraging a competitive training 

approach [25]. The model comprises two neural networks: the 

generator, which synthesizes images to mimic real ones, and 

the discriminator, which evaluates and identifies whether the 

input is real or generated (Figure 3). Through this adversarial 

interaction, the generator progressively improves its ability to 

create authentic-looking outputs. GANs have demonstrated 

remarkable success in tasks such as image inpainting and 

restoration due to their capacity to model intricate data 

distributions and produce coherent, high-resolution results. 

 

 
Figure 3. GAN Architecture 

 

 To enhance the performance and robustness of the GAN 

architecture for facial image reconstruction, a series of 

modifications were implemented across six experiments. 

These changes aimed to improve image quality, coherence, 

and identity preservation by progressively refining the 

generator and discriminator architectures, as well as their loss 

functions. 

 In the initial experiment, the generator utilized seven 

downsampling and seven upsampling layers, complemented 

by five residual blocks with 64 filters, while the discriminator 

was enhanced with five residual blocks of 512 filters to 

improve its differentiation capability. The second experiment 

increased the generator's depth to eight downsampling and 

eight upsampling layers, maintaining five residual blocks, 

while introducing adversarial loss to the discriminator for more 

effective feedback during training. The third experiment 

adjusted the generator by reducing upsampling layers to seven, 

keeping its residual blocks unchanged, with the discriminator 

architecture and adversarial loss remaining consistent. 

 The fourth experiment introduced a combination of 

adversarial loss, VGG16-based perceptual loss, and 

reconstruction loss in the generator, aiming to balance realism, 

feature-level consistency, and pixel-level fidelity. In the fifth 

experiment, the VGG16 perceptual loss was replaced with 

VGG19 perceptual loss to leverage deeper feature extraction 

for improved perceptual accuracy. 

 

 
Figure 4. Generator Architecture for 6th Experiment 
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 Finally, the sixth experiment, as illustrated in Figure 4, 

evaluates the generator's performance using a U-Net-based 

architecture that incorporates an integrated attention 

mechanism. The U-Net framework consists of an encoder-

decoder structure designed to capture and reconstruct spatial 

features effectively. The encoder compresses the input image 

into a latent representation by progressively reducing spatial 

dimensions, while the decoder reconstructs the image by 

upscaling the latent representation back to the original 

resolution. Skip connections are added between corresponding 

layers of the encoder and decoder to retain spatial details and 

prevent the loss of crucial low-level information during feature 

extraction. The attention block improves the model's ability to 

perform accurate mappings between masked and original 

images. 

 

 
Figure 5. Discriminator Architecture for 6th Experiment 

 

 Also in the sixth experiment, the generator’s loss function 

incorporated adversarial loss, perceptual loss based on 

EfficientNetV2B0, and reconstruction loss, while the 

discriminator retained its five residual blocks with adversarial 

loss, as depicted in Figure 5. The discriminator architecture, 

consisting of sequential convolutional layers followed by 

BatchNormalization and LeakyReLU activations, effectively 

distinguishes between real and generated images, ensuring the 

generator produces high-quality outputs. This design 

emphasizes the balance between generator and discriminator 

training for optimal adversarial performance. 

 These modifications were essential to address limitations 

in existing GAN frameworks by enhancing the preservation of 

facial identity, improving the coherence of reconstructed 

features. By systematically refining both architecture and loss 

functions, the proposed framework achieves a robust balance 

between realism and identity fidelity, critical for accurate 

facial image reconstruction. 

 

C. Training Process  

The training process utilized an AMD Ryzen 5 5500U 

CPU with integrated AMD Radeon Graphics, serving as a trial 

to evaluate the feasibility of training deep learning models on 

CPU-based systems. Despite the inherent limitations in 

processing speed compared to GPU-based systems, the AMD 

Ryzen 5 5500U provided sufficient computational power for 

handling image reconstruction tasks, showcasing the 

versatility and accessibility of deep learning implementations 

on more economical hardware. This trial underscores the 

broader applicability of the proposed method, particularly in 

resource-constrained settings, making it a significant 

contribution to the field. Each experiment was conducted over 

50 epochs, ensuring sufficient iterations for the model to learn 

and refine its performance while maintaining consistency 

across all trials to facilitate a fair and comprehensive 

comparison of results. 

The training strategy in the code also involves alternating 

optimization of the generator and discriminator to achieve 

balanced adversarial training. The generator uses a multi-

component loss function—adversarial, perceptual loss, 

contextual, and reconstruction losses—to produce realistic 

and semantically consistent images. The discriminator is 

trained with adversarial loss to effectively distinguish real and 

generated images. Both networks are optimized with Adam 

(learning rate 2e-4, β1 = 0.5), and data augmentation 

techniques, such as random flipping and brightness 

adjustments, are applied to enhance generalization and 

robustness. This approach ensures stable training and high-

quality outputs. 

 

D. Evaluation Parameter 

 The performance of the Generative Adversarial Network 

(GAN) model is evaluated using several critical metrics. 

Among these are the Generator Loss, which determines the 

generator’s capability to create convincing outputs that 

successfully fool the discriminator, the Discriminator Loss, 

which measures how well the discriminator can differentiate 

between real and generated data. Additionally, the Structural 

Similarity Index Measure (SSIM) is employed to evaluate 

perceptual similarity by analyzing aspects like luminance, 

contrast, and structural features between the generated images 

and ground truth. Finally, the Peak Signal-to-Noise Ratio 

(PSNR) is used to assess the quality of reconstructed images 

by quantifying their pixel-wise similarity to the ground truth. 

 

1. Generator Loss 

 The generator loss measures the effectiveness of the 

generator in producing realistic data that can deceive the 

discriminator [26]. It is typically derived from the adversarial 

loss, which quantifies how well the generator’s output aligns 

with the target distribution. For GANs, the generator loss can 

be expressed as shown in Equation 1. 
 
LG = - Ez⁓pz (z) [log (D(G(z)))]                (1)        
 

Where: 

• 𝐿𝐺 : Generator loss, measuring how well the generator fools 

the discriminator. 

• 𝑧∼𝑝𝑧(𝑧) : Noise vector sampled from a prior distribution. 

• 𝐺(𝑧) : Generated image from the generator. 

• 𝐷(𝐺(𝑧)) : Discriminator’s probability that  𝐺(𝑧) is real. 

 

2.  Discriminator Loss   

 The discriminator loss evaluates the discriminator’s ability 

to distinguish between real and generated data. It consists of 

two terms: the loss for real data and the loss for generated 

data[27]. Discriminator loss is given by Equation 2. 
 
LD = -Ex⁓Pdata(x)[log (D(x))] – Ez⁓pz(z) [log(1-D(G(z)))]         (2) 
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Where: 

• LD : Discriminator loss, measuring the performance of the 

discriminator. 

• x ⁓ Pdata(x) : Real data samples from the data distribution. 

• z pz(z): Noise vector sampled from a prior distribution. 

• D(x) : Discriminator’s probability that x is real. 

• D(G(z)) : Discriminator’s probability that the generated 

image G(z) is real. 

 

3. Structural Similarity Index Measure (SSIM)  

 SSIM is a perceptual metric that measures image similarity 

by considering luminance, contrast, and structure . It is widely 

used to evaluate the quality of reconstructed or generated 

images [28]. The SSIM value ranges from -1 to 1 (perfect 

similarity). SSIM is  calculated  using  the formula as in 

Equation 3. 

 

SSIM (x, y) = 
( 2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1) (𝜎𝑥
2+ 𝜎𝑦

2+𝐶2)
                       (3) 

 

Where: 

• 𝜇𝑥 and 𝜇𝑦 are the means of the images𝑥 and 𝑦. 

• 𝜎𝑥2 and 𝜎𝑦2 are the variances of the images𝑥and𝑦. 

• 𝜎𝑥𝑦 is the covariance between the images 𝑥 and𝑦 . 
• 𝐶1 and 𝐶2 are constants used to maintain the stability of the 

calculation when the denominator approaches zero. 

 

4. Peak Signal-to-Noise Ratio (PSNR)  

 PSNR measures the quality of the generated or 

reconstructed image compared to the original ground truth 

image. It is expressed in decibels (dB) and is calculated based 

on the Mean Squared Error (MSE) between two images [29]. 

Higher PSNR values indicate better image quality. The 

formula is given by Equation 4. 

 

PSNR = 10.Log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                            (4) 

 

Where: 

• 𝑀𝐴𝑋 is the maximum pixel intensity value  

• 𝑀𝑆𝐸 is the Mean Squared Error between the original 

image and the generated image., and MSE is given by 

Equation 5. 

 

MSE = 
1

𝑚 .𝑛
 ∑ ∑ [𝑥 (𝑖, 𝑗) − 𝑦(𝑖, 𝑗)]𝑛

𝑗=1
𝑚
𝑖=1

2                            (5) 

 

Where: 

• x(I,j) and 𝑦(𝑖,𝑗) represent the pixel values of the original 

and generated images at position (𝑖,𝑗) respectively. 

• 𝑚 and 𝑛 denote the dimensions of the image (height and 

width), with 𝑚𝑛 being the total number of pixels 

 

5. Cosine Similarity (for Face Recognition Confidence) 

 Cosine similarity measures the cosine of the angle between 

two vectors (embeddings) [24]. Higher values indicate greater 

similarity is given by Equation 6. 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑎𝑛𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 = cos(𝜃) =  
𝐴.𝐵

|𝐴||𝐵|
                           (6) 

 

Where: 

• A and B Feature embeddings of the reconstructed and 

ground truth images, respectively. 

• |A| Magnitude (norm) of vector A 

• Values range from −1 to 1 

 

6. Confidence from Detection Model (for Face Detection) 

 In face detection, confidence often represents the model's 

probability output for detecting a face [24]. This is derived 

from a softmax activation or similar probability estimation, 

given by Equation 7. 

 

Confidence Level = P(Face)                              (7) 

 

Where P(Face) the probability assigned by the model to the 

presence of a face. 

 

 

III. RESULT AND DISCUSSION 

A. Training Evaluation  

The evaluation of a Generative Adversarial Network 

(GAN) model typically involves analyzing the loss functions 

of both the generator and the discriminator. These losses are 

crucial for understanding the model’s performance during 

training and its ability to generate high-quality, realistic 

images. 

 

 
Figure 6. Discriminator Loss to Epoch for Six Modification 

 

The Figure 6 shows the discriminator loss across 50 

epochs for six different model modifications (Modif_1 to 

Modif_6). The y-axis represents the discriminator loss, while 

the x-axis indicates the epochs. Initially, all models 

experience a significant reduction in loss, followed by 

stabilization and minor fluctuations. Among them, Modif_6 

exhibits the lowest loss, suggesting better discriminator 

performance and potentially more robust training stability. In 

contrast, Modif_1 maintains the highest loss values, which 

could indicate challenges in learning or an imbalance between 

the generator and discriminator. Modif_3, Modif_4, and 

Modif_5 show moderate performance with relatively 

consistent trends, while Modif_2 exhibits intermediate results 

with slightly higher fluctuations. This analysis suggests that 
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architectural or parameter differences in Modif_6 likely 

enhanced its capability to differentiate between real and 

generated samples effectively, leading to a more stable and 

lower loss trajectory. 

 

 
Figure 7. Generator Loss to Epoch for Six Model 

Modification 

 

The Figure 7 represents the generator loss across 50 

epochs for six model modifications (Modif_1 to Modif_6). 

Modif_1 consistently exhibits the highest loss values, 

indicating relatively weaker generator performance in 

producing realistic outputs. Conversely, Modif_6 achieves the 

lowest loss values, reflecting better training dynamics and 

stronger generator performance. Modif_3, Modif_4, and 

Modif_5 have moderate and comparable losses, with 

occasional spikes in loss, particularly noticeable around 

epochs 10, 30, and 40. These spikes may suggest moments of 

instability in adversarial training. Modif_2 demonstrates 

intermediate loss values but with fewer pronounced 

fluctuations. The results imply that Modif_6 outperforms the 

other models, likely due to enhancements in architecture or 

training strategies, while Modif_1 struggles to match the 

adversarial learning process effectively.  
The training loss patterns of both the discriminator and 

generator, shown in Figures 3 and 4, offer insight into the 

training stability and convergence of each model.Modif_6 and 

Modif_5 exhibit the most stable loss curves, particularly in 

their generator loss. Both models show consistent and gradual 

reductions in loss over time, indicating effective learning and 

better convergence. 

 

B. Qualitative Visual Test Result 

During the evaluation phase, the trained model was tested 

using previously unseen images to assess its performance. 

Below is the visualization of the results from the six 

modifications. Additionally, some sample images are 

provided to illustrate the reconstructed outputs compared to 

the ground truth, highlighting the performance differences 

across the modifications 
The Figure 8 showcases results from modifications 1 and 

2 of the Generative Adversarial Network (GAN) model 

applied to reconstruct occluded face images. The first column 

represents the occluded input images, while the second and 

third columns display the reconstructed outputs from 

modifications 1 and 2, respectively The fourth column 

illustrates the ground truth images.  

 
Occluded Modif_1 Modif_2 Groundtruth 

 
Figure 8. Result for Modification 1 and 2 

 

Compared to modification 1, modification 2 demonstrates 

improved reconstruction quality, with smoother textures and 

better alignment of facial features, particularly in regions 

affected by occlusion. However, subtle artifacts are still 

visible, indicating potential areas for further enhancement. 

 

Occluded Modif_3 Modif_4 Groundtruth 

 
Figure 9. Result for Modification 3 and 4 
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In Figure 9. Compares results from modifications 3 and 4 

for occluded face reconstruction using GANs. The second and 

third columns display outputs from modification 3 and 

modification 4, respectively. Modification 4 demonstrates 

improved feature alignment and reduced artifacts compared to 

modification 3, resulting in reconstructions that are closer to 

the ground truth shown in the fourth column 
 
Occluded Modif_5 Modif_6 Groundtruth 

 
Figure 10. Result for Modification 5 and 6 

 

The visual output of each GAN model, presented in Figure 

8, 9 and 10 offers a direct comparison of how well each model 

reconstructs occluded images. Modif_6: This modification 

produces the clearest and most accurate reconstructions, 

closely resembling the ground truth images. Fine details and 

textures are well-preserved, making it the best performing 

modification in terms of visual quality. The ability of Modif_6 

to reconstruct the occluded areas with minimal blurring or 

artifacts demonstrates its robustness in handling complex 

features. 

Modif_5: Similar to Modif_6, this modification also 

performs very well, though with slightly more visible artifacts 

in some cases. The reconstructions are sharp and visually 

convincing, particularly in areas with strong textures and 

high-frequency details. Modif_4: This model offers decent 

reconstructions, but there is a noticeable drop in visual quality 

compared to Modif_5 and Modif_6. Some of the occluded 

areas appear blurry or lose finer details, suggesting that 

Modif_4 has less capacity to fully restore the masked regions 

with high fidelity. 

Modif_3: The results here are moderately good but still 

fall behind Modif_4. The images generated by Modif_3 

exhibit some blurring and a slight loss of structure in certain 

regions. While the model performs well in restoring general 

shapes, it struggles with fine textures and edges. Modif_2: 

The quality of image reconstruction by Modif_2 is slightly 

better than Modif_1but remains below the other 

modifications. The model tends to produce less sharp images, 

with visible noise in the occluded areas. This reflects a 

moderate ability to reconstruct the images but with noticeable 

quality loss in detail. 

Modif_1: This modification generates the poorest quality 

reconstructions. The restored areas are visibly distorted or 

unclear, and the generated images lack sharpness, making 

them the least accurate among all modifications. The GAN 

struggles to recover important visual information, suggesting 

suboptimal model configuration or training stability issues. 

 

C. Quantitative Test Result 

 

 
Figure 11. Average SSIM Graph for Each Modification 

 

 Modif_6 achieves the highest average SSIM of 0.901, 

indicating excellent preservation of image structure and high 

similarity to the ground truth, as shown in Figure 11. Modif_5 

closely follows with an average SSIM of 0.898, reaffirming its 

strong structural reconstruction capabilities. Modif_4 also 

performs well, achieving an average SSIM of 0.806, though it 

shows a slight decrease in its ability to maintain structural 

integrity, particularly in more complex regions. 

Modif_3 and Modif_2 achieve average SSIM scores of 

0.86 and 0.84, respectively, demonstrating a moderate ability 

to preserve image structure but with noticeable degradation in 

more intricate areas. Modif_1 records the lowest average SSIM 

of 0.63, reflecting poor structural preservation, as the model 

struggles to reconstruct occluded areas with sufficient detail. 

 

 
Figure 12.  Average PSNR for Each Modification 

 

Modif_6 achieves the highest average PSNR value 

(26.93), meaning it has the best noise reduction and highest 

fidelity in reconstructing the original image. Modif_5 is close 
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behind with an average PSNR of 26.9, which confirms its 

excellent performance in generating high-quality images with 

minimal noise shown in Figure 12. 

Modif_4 scores 23.72, still performing well but with more 

noticeable noise and lower reconstruction accuracy compared 

to the top two. Modif_3 and Modif_2 have lower averages 

PSNR values of 22.25 and 21.17, respectively, reflecting their 

moderate ability to reduce noise but also their limitations in 

fully capturing image details. 

Modif_1 exhibits the lowest average PSNR (19.18), 

highlighting its inability to accurately reconstruct the original 

image with high fidelity, as substantial noise and distortions 

remain in the output. 

Compared to previous studies on facial image 

reconstruction, which utilized a VAE-based generator and 

curriculum learning with local and global discriminators, the 

proposed method demonstrates clear advancements. Earlier 

methods achieved an average SSIM of 0.651 and a average 

PSNR of 21.067, reflecting moderate structural preservation 

and noise reduction [30]. In contrast, this study employs a U-

Net-based generator with an attention mechanism and a 

combined loss function incorporating perceptual loss 

(EfficientNetV2), achieving significantly higher average 

SSIM (0.901) and average PSNR (26.93). These results 

highlight the improved structural accuracy and noise 

reduction capabilities of the proposed approach. 

 

D. Face Detection Test with Sface 

At this stage, the reconstructed facial images are tested 

using a pre-trained face recognition model, such as SFace 

[24]. This testing evaluates whether the reconstructed faces 

can be accurately detected and compared to the ground truth, 

ensuring the preservation of essential facial features. By 

computing embedding similarities between the reconstructed 

and original faces, this method provides a quantitative 

measure of how well the reconstruction retains identity and 

structural integrity. 

 To illustrate the results more effectively, several 

representative samples of the reconstructed images are 

presented, highlighting the model's performance under 

various conditions. This evaluation serves as a foundational 

step for assessing the effectiveness of the proposed 

reconstruction method and its applicability in real-world 

tasks, such as facial recognition or identity verification 

In Figure 13, the reconstruction test using SFace 

demonstrates the progression of facial reconstruction quality 

across different modifications. Confidence levels, manually 

assigned for this visualization, range from poor similarity in 

Modif_1 (Conf: -0.14) to significantly improved similarity in 

Modif_6 (Conf: 0.65). Bounding boxes indicate detected 

facial features, validating the presence of recognizable 

structures in the reconstructed images. The ground truth 

serves as a reference for evaluating the overall reconstruction 

performance. 

 
Figure 13. Reconstruction Test With SFace, Showing 

Bounding Boxes and Confidence Levels for Each 

Modification. 

 

In addition to the primary evaluation, testing was also 

conducted under different challenges, such as occlusion and 

noise. The inclusion of these challenges allows for a more 

comprehensive evaluation of the model's ability to maintain 

facial identity and structural coherence under adverse 

conditions, providing valuable insights into its practical 

applicability and limitations. 

 

 
Figure 14. Sface Test Under Occlusion Condition 

 

Reconstruction test results under challenging conditions, 

including occlusion shown in Figure 14. The figure illustrates 

the gradual improvement in facial reconstruction quality 

across different modifications (Modif_1 to Modif_6). 

Confidence levels, displayed alongside bounding boxes, 

indicate the similarity between the reconstructed images and 

the ground truth. Starting from Modif_1 (Conf: -0.09), the 

confidence levels progressively increase, reaching Modif_6 

(Conf: 0.61), which demonstrates the best reconstruction 

performance. The ground truth image serves as a reference, 

while the "Occluded" image shows the initial heavily masked 

input with no detectable face. 

 

 
Figure 15. Sface Test Under Noise Condition 

 

Reconstruction test results under noise distortion, as 

shown in Figure 15. The figure demonstrates the model's 
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ability to reconstruct facial features when the input image is 

corrupted by noise. Confidence levels show a gradual 

improvement from Modif_1 (Conf: -0.26) to Modif_6 (Conf: 

0.63), reflecting an increase in similarity to the ground truth. 

The "Noise" input, where no face is detected, serves as the 

starting point for reconstruction. Modif_6 exhibits the best 

performance, closely approximating the ground truth, while 

earlier modifications (Modif_1 to Modif_3) struggle to 

capture essential facial details. The ground truth image 

provides a benchmark for evaluating reconstruction accuracy. 

The testing results indicate that the proposed 

reconstruction method performs well overall. Notably, 

Modif_6 consistently achieves the highest performance across 

various conditions, with an average confidence level 

exceeding 0.55. This demonstrates the model's robustness and 

effectiveness in preserving facial identity and structural 

details under both standard and challenging scenarios. 

 

 

IV. CONCLUSION 

The performance and robustness of the GAN modifications 

for facial image reconstruction demonstrate a clear progression 

in quality and effectiveness across the six experiments. The 

results underline the impact of architectural and loss function 

refinements on the visual quality, structural preservation, and 

quantitative fidelity of the reconstructed images.   

Modif_6 emerges as the most effective modification, 

achieving the highest average PSNR (26.93) and average 

SSIM (0.90), and producing visually accurate reconstructions 

with minimal artifacts. The incorporation of skip connections 

and the EfficientNetV2B0-based perceptual loss proved 

instrumental in enhancing spatial consistency and feature 

extraction. Modif_5, with its VGG19 perceptual loss, 

performed nearly as well, with slightly lower fidelity but 

retaining excellent structural preservation and feature detail.   

While Modif_4 showed competitive results, the drop in 

average PSNR (23.72) and average SSIM (0.80) indicates that 

the addition of perceptual loss from VGG16, while beneficial, 

did not match the depth and feature extraction capability of 

VGG19 or EfficientNetV2B0. The earlier modifications, 

Modif_3, Modif_2, and Modif_1, exhibited a gradual decline 

in reconstruction quality, with Modif_1 scoring the lowest 

across all metrics. The limitations in architectural design and 

loss functions in these earlier models resulted in less effective 

learning, leading to higher noise, blurring, and structural 

inconsistencies in reconstructed images.   

The testing conducted with SFace further validates the 

model's performance. Modif_6 consistently achieved 

confidence levels exceeding 0.55 across different conditions, 

such as occlusion and noise, demonstrating its ability to retain 

facial identity and structural integrity in challenging scenarios. 

These results emphasize the applicability of the proposed 

method for tasks requiring robust face detection and 

recognition.   

The training loss trends provide further insights into the 

observed performance differences. Modif_6 and Modif_5 

demonstrated stable and smooth convergence in their loss 

curves, correlating with their superior reconstruction 

outcomes. In contrast, the earlier modifications, particularly 

Modif_1, suffered from significant instability during training, 

which likely hindered the models’ ability to accurately capture 

the data distribution and resulted in suboptimal 

reconstructions.   

Overall, the progressive enhancements in GAN 

architecture and training methodologies underscore the 

importance of balanced architectural depth, effective loss 

function design, and stable training dynamics in achieving 

robust facial image reconstruction. These findings highlight 

the potential of advanced GAN models, such as Modif_6, for 

real-world applications in facial image restoration and beyond.   

 While the results demonstrate significant progress, several 

avenues for further exploration remain. These include applying 

the method to video frame reconstruction for dynamic 

scenarios, integrating the approach with multi-modal systems 

(e.g., combining image and audio data), and extending the 

method to handle extreme distortions or larger occlusions. 

Addressing these areas can further enhance the robustness and 

versatility of the proposed reconstruction framework. 
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