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Abstract 

 

Ancient Javanese manuscripts are part of Indonesia's cultural heritage; most of them are usually in bad condition due to the age 

and environmental surroundings. This paper presents a manuscript reconstruction using the Generative Adversarial Network 

model, using the variation of StarGAN v2. The primary objective of this research is to assist philologists in reconstructing 

damaged manuscripts more efficiently, reducing the time and effort compared to manual reconstruction methods. The training 

for 100 epochs is performed by the model in order to generate the reconstruction image closest to ground truth. This study is 

done on a dataset that consists of a set of damaged manuscript images. In this dataset, 80% is for training, 20% is for validation, 

and 10 images are used for testing. Quality assessment will be made on image outputs during training, based on PSNR, SSIM, 

and LPIPS metrics. The results indicate that the PSNR increases from 16.1234 dB at the 50th epoch to 17.5588 dB at the 100th 

epoch, while the SSIM increases from 0.8374 to 0.8519, showing a strong improvement in image quality. Despite the LPIPS 

having a very slight increase from 0.1020 to 0.1051, this evidences that the model can be further improved. Overall, this study 

demonstrates that the StarGAN v2 model is effective in reconstructing ancient Javanese manuscripts-a great contribution to the 

field of cultural heritage preservation using modern technology.  
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I. INTRODUCTION 

Ancient Javanese manuscripts are a very valuable cultural 

heritage, recording the history and knowledge of humanity for 

centuries. The existence of these manuscripts in Indonesia has 

to be preserved and maintained, as they are able to reveal the 

mindset of the people at that time [1]. However, many of these 

ancient Javanese manuscripts have been physically damaged 

over time due to age, unfavorable environmental conditions, 

and suboptimal storage methods. This is because damage 

causes the loss of an important part of the text contained in it, 

making it difficult to read and understand again. 

Ancient Javanese manuscripts contain not only historical 

and mythological stories, but also religious, philosophical, and 

scientific knowledge of the past [1][2]. Most of these 

manuscripts are written on palm leaves, daluang paper, or other 

organic materials that are easily fragile. Moreover, the use of 

ancient Javanese script, which is rarely studied, makes it 

difficult for modern researchers to interpret and transliterate 

the manuscript. 

Physical deterioration in manuscripts includes staining, 

tears, faded ink, and loss of certain portions. Causal factors 

involve the age of the organic material on which manuscripts 

were prepared, environmental conditions pertaining to light 

exposure, temperature, humidity, and infestation of insects, 

improper storage or absence of protective facilities such as a 

temperature-controlled room [3]. 

Over the last decades, the development of Artificial 

Intelligence technology, especially in the field of deep 

learning, has opened new opportunities for solving damaged 

image reconstruction problems. The Generative Adversarial 

Network has become a leading model in image data 

processing. GAN works with two networks: a Generator that 

generates new data and a Discriminator that evaluates whether 

the data is real or artificial [4]. The interaction between these 

two networks enables GANs to generate high-quality data, 

especially in the context of images. In this case, GANs can be 

used to reconstruct missing or damaged parts based on patterns 

present in the original data. 

StarGAN V2 is a variant of GAN designed for 

multitransform image-to-image translation [5]. Compared to 

traditional GANs, StarGAN V2 has the advantage of 

generating more varied and realistic results by using style 

vectors, and provides cross-domain adaptability that enables 

image reconstruction with a variety of styles [5][6]. In this 

research, StarGAN V2 is used to reconstruct ancient Javanese 
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manuscripts by generating parts of the text that were damaged 

or missing according to the context and style of the original 

writing. 

The paper, "StarGAN v2: Diverse Image Synthesis for 

Multiple Domains" by Yunjey Choi, et al., used the CelebA-

HQ and AFHQ datasets to test the GAN model variations of 

StarGAN V2 [5]. The research focuses on the generation of 

high image diversity within the target domain and scalability 

across multiple target domains with only one model generator. 

In the results, StarGAN V2 integrates domain-specific style 

codes that enable the creation of style variations within each 

target domain. But beyond that, it also includes baselines such 

as MUNIT, DRIT, and MSGAN in terms of much better visual 

quality (Frechét Inception Distance) while sustaining image 

diversity (Learned Perceptual Image Patch Similarity), with an 

FID on CelebA-HQ and on AFHQ of 13.7 and 16.2, 

respectively, showing significantly high performances. 

Another research, by Yannis Assael, et al., entitled 

"Restoring And Attributing Ancient Texts Using Deep Neural 

Networks," introduced a deep learning model for three 

principal tasks in epigraphy: restoring damaged ancient texts, 

geographic attribution, and chronological attribution of texts 

[7]. Ithaca was designed to increase accuracy and efficiency in 

restoring, locating the original place, and dating ancient 

inscriptions, particularly in ancient Greek. The results were a 

26.3% CER, far better than human historians' 59.6% and the 

previous model, Pythia, at 47.0%. The top-1 accuracy was 

61.8%, whereas for Top-20 predictions, it rose to 78.3%. 

Human historians assisted by Ithaca also resulted in increased 

accuracy of 71.7% and a CER of 18.3%. 

The research gap from this study is that there is no method 

of reconstructing Javanese script that can automatically repair 

the damage accurately. This research proposes a novelty in 

applying a customized StarGAN V2 model to handle various 

types of script damage in terms of size and shape. The novelty 

in this research is the construction of a StarGAN V2 model 

adapted for Javanese script, which has not yet been widely 

explored in the literature related to ancient manuscript 

reconstruction. Using this technology, it is expected to play an 

important role in preserving Indonesia's cultural heritage and 

to give a chance for further research in the field of image 

processing and ancient text reconstruction. 

 

 

II. RESEARCH METHOD 

The method used in this research is Generative Adversarial 

Network, or GAN, with a variation called StarGAN v2, which 

consists of four main components in the reconstruction 

process. Figure 1 illustrates the steps taken in this research. 

The architecture includes a style encoder, a mapping 

network, a generator, and a discriminator, working 

collaboratively to reconstruct damaged manuscripts. The style 

encoder and mapping network capture style variations, while 

the generator synthesizes reconstructed images that resemble 

the ground truth. The discriminator evaluates the generated 

images to improve the model’s performance. 

 
Figure 1. Research Architecture 

 

A. Data Collection 

The dataset of this research comes from ancient Javanese 

manuscripts stored at the MPU Tantular Museum, Sidoarjo, 

East Java. Those manuscripts include Jajusalatin, Samkok, 

Serat Ramayana, and Kitab Ramayana, with several types of 

damage, such as spots on the paper, ink bleeding, holes, and 

blurred characters (Figure 2). 

 

 
Figure 2. Photographing the Javanese Script Manuscript 

 

The data was obtained by direct photography of the 

manuscript pages using a camera. Each manuscript was 

photographed up to 10 pages, with an initial total of 40 photos. 

In addition, the museum added 13 pages from related 

collections to the manuscript, amounting to 53 pages in total. 

To provide more focused data, each page was cropped into 

five parts, yielding 265 Javanese script images as shown in 

Figure 3. 

 

 
Figure 3. Image of Javanese Manuscript 
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B. Preprocessing Data 

From the 265 already-prepared Javanese script images, a 

problem was found in the length-width dimension of the 

images. All images were resized to 512x256 pixels. Besides, 

the images are normalized in the range of [0, 1] by dividing 

the original pixel values which are in the range of [0, 255]. 

The aim is to accelerate the convergence of the model during 

training. Then, they are converted into grayscale images and 

extra channels are added to make sure all images are three-

channel formats, such as RGB. 

 

C. Splitting Data Training 

The dataset of 265 Javanese script images was split into 

three parts: training, validation, and testing. In total, 25 

images were allocated for testing with non-randomized data 

selection to ensure that the images represented various levels 

of damage and script characteristics. The remaining 240 

images were divided in a proportion of 80% for training, 

amounting to 192 images, and 20% for validation, amounting 

to 48 images. 

 

D. Augmentation Data 

In the augmentation of data, the augmentation techniques 

will be applied to the training data, both for damaged images 

and ground truth images. The augmentation used will include 

several techniques: padding, rotation, Gaussian blur, and 

Gaussian noise. The padding technique is useful in adding 

margins around the image so that the size and proportion of 

the image remain consistent despite the rotation [8]. A rotation 

of 5 degrees is applied to increase the variation in image 

orientation, so that the model becomes more robust against 

small shifts in script orientation. To simulate damage which 

obscures the text, Gaussian blur is used, while Gaussian noise 

is added to simulate disturbances that may appear in digitized 

images of old manuscripts, such as spots or artifacts [9]. 

After the process of augmentation is complete, the 

augmented results are combined with the original training data 

to enrich the amount of training data. It aims to improve the 

generalization ability of the model in recognizing and 

reconstructing Javanese characters in various conditions of 

damage and interference so that the model can be more 

effective in handling data that has never been seen before. 

 

E. StarGAN v2 Models 

StarGAN v2 is an extension of StarGAN, a Generative 

Adversarial Network-based model designed to handle image-

to-image translation tasks. StarGAN v2 offers significant 

improvements over previous versions by introducing the 

ability to generate images with richer stylistic variations in 

multiple domains using a single model. Unlike the regular 

StarGAN, which only translates images between specific 

domains without considering stylistic diversity, StarGAN v2 

allows controlling stylistic variations within the target domain 

through the integration of style codes [5]. This makes 

StarGAN v2 more flexible and suitable for various creative 

applications, such as face manipulation, art style changes, or 

image reconstruction. 

The StarGAN v2 architecture consists of four main 

components: Style Encoder, Mapping Network, Generator, 

and Discriminator, which work together to produce images 

with high quality and diversity [5][10]. Each component plays 

an important role in ensuring the success of the image-to-

image translation process, including generating style 

variations that match the target domain and maintaining the 

authenticity of the resulting images. 

The used Style Encoder consists of four convolution 

blocks, each using a convolution layer with a kernel size of 

4x4, stride 2, and padding 1, followed by Leaky ReLU 

activation function and Batch Normalization to maintain 

stability during training. The last block is completed with an 

Adaptive Average Pooling layer that reduces the spatial 

dimension to a fixed size of 1×1, so the output remains 

consistent even if the input size varies. This layer's output is 

then flattened and fed to the fully connected layer to produce 

a 512-dimensional style code. The architecture of the Style 

Encoder can be seen in Table 1 below. 

 

Table 1. Encoder Style Architecture 

Layer Activation Additional Info Output Shape 

Conv2D LReLU - 
(B, 64, H/2, 

W/2) 

Conv2D LReLU 
BatchNorm2D 

(128) 

(B, 128, H/4, 

W/4) 

Conv2D LReLU 
BatchNorm2D 

(256) 

(B, 256, H/8, 

W/8) 

Conv2D LReLU 
BatchNorm2D 

(512) 

(B, 512, H/16, 

W/16) 

Adaptive

AvgPool

2D 

- 
Output size: 

(1, 1) 
(B, 512, 1, 1) 

Flatten - 
Flattens the 

tensor 
(B, 512) 

Fully 

Connecte

d (FC) 

- 
Maps to style 

vector 
(B, 512) 

 

Mapping Network: The used network is an MLP 

consisting of eight fully connected layers. The input, hidden 

layers, and output for style code have a fixed dimension of 

512. All the layers are unshared, and ReLU activation has 

been applied to all layers except the last one. The input style 

code is processed to get a more complex representation of the 

style without using pixel or feature normalization since such 

approaches do not improve performance and can actually 

degrade performance. The architecture can be seen in Table 2 

below. 

 

Table 2. Architecture Mapping Network 

Type Layer Activation Output Shape 

Unshared Linear ReLU 512 

Unshared Linear ReLU 512 
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Unshared Linear ReLU 512 

Unshared Linear ReLU 512 

Unshared Linear ReLU 512 

Unshared Linear ReLU 512 

Unshared Linear ReLU 512 

Unshared Linear - 512 

 

The generator starts with the process of encoding the input 

image using three consecutive convolution layers, each 

followed by a ReLU activation function. During this stage, the 

image undergoes downsampling to reduce resolution and 

extract important features. Then, the image goes through 

several residual blocks, where each block consists of two 

convolution layers equipped with AdaIN (Adaptive Instance 

Normalization) normalization to adapt the feature 

representation to a given style. These residual blocks go 

deeper into the network to enhance the model with the 

capability of reconstructing images with finer details [11]. 

After that, the image is processed through the decoder, which 

uses the convolution transposition layer for upsampling to 

increase the resolution of the image back to its normal size. 

The architecture of the Generator can be visualized in Table 3 

below. 

 

Table 3. Architecture Generator 

Type Layer Resample Output Shape 

Encoder Conv2D - (64, H, W) 

Encoder ReLU - (64, H, W) 

Encoder Conv2D Down (128, H/2, W/2) 

Encoder ReLU - (128, H/2, W/2) 

Encoder Conv2D Down (256, H/4, W/4) 

Encoder ReLU - (256, H/4, W/4) 

ResBlock Conv2D - (256, H/4, W/4) 

ResBlock AdaIN - (256, H/4, W/4) 

ResBlock ReLU - (256, H/4, W/4) 

ResBlock Conv2D - (256, H/4, W/4) 

Decoder 
ConvTransp

2D 
Up (128, H/2, W/2) 

Decoder ReLU - (128, H/2, W/2) 

Decoder 
ConvTransp

2D 
Up (64, H, W) 

Decoder ReLU - (64, H, W) 

Decoder Conv2D - 
(out_channels, 

H, W) 

Decoder Tanh - 
(out_channels, 

H, W) 

 

Discriminator's architecture starts with a convolutional 

layer with Conv2D - downsampling images with a feature 

stride of 2 - followed by nonlinear activation through 

LeakyReLU. Further, batch normalization was performed 

after the second, third, and fourth convolution layers so that 

the training is stabilized and the convergence of the model is 

accelerated. The image then passes through a series of 

consecutive convolution layers with a kernel size of 4x4; this 

causes the size of the image to decrease with an increase in 

the depth of the layer. The final output of the Discriminator is 

a feature map of depth one that gives a judgment on whether 

the image is real or fake based on the results of the model 

evaluation. Architecture of the Discriminator: Architecture of 

the Discriminator is shown in Table 4 below. 

 

Table 4. Architecture Discriminator 

Layer Resample Norm Output Shape 

Conv2D 

(3 → 64) 
Stride 2 - 128 x 128 x 64 

LReLU - - 128 x 128 x 64 

Conv2D 

(64 → 128) 
Stride 2 BatchNorm 64 x 64 x 128 

LReLU - - 64 x 64 x 128 

Conv2D 

(128 → 256) 
Stride 2 BatchNorm 32 x 32 x 256 

LReLU - - 32 x 32 x 256 

Conv2D 

(256 → 512) 
Stride 2 BatchNorm 16 x 16 x 512 

LReLU - - 16 x 16 x 512 

Conv2D 

(512 → 1) 
Stride 2 - 8 x 8 x 1 

 

F. Training 

Two epoch schemes were conducted in the training stage, 

namely 50 and 100 epochs. Training was conducted using 

Google Colab Pro with hardware specifications including 51 

GB RAM, a T4 GPU with a capacity of 15 GB, and a 235.7 

GB disk. Data used for training was stored in Google Drive 

and loaded into the training program. While launching the 

code, the whole training program includes batch processing: 

corrupted images, ground truth images, followed by further 

processing using the generator network combined with style 

encoding and generating new images. In the following order, 

there is an implementation of a Discriminator on the 

authenticity of the final obtained image and an evaluation 

process- loss calculation in each of both models: 

Discriminator and Generator. The code is elaborated on an 

epoch-based and batch basis. 

In the calculation stage of the loss function, there are two 

types of loss involved, namely adversarial loss and 

reconstruction loss. The Adversarial Loss is used to measure 

the extent to which the generator can produce images that are 

considered original by the discriminator [4][12], while 

Reconstruction Loss is used to measure the similarity between 

the generated image and the ground truth [13]. The loss 

function works by maximizing the validity of the original 

image and minimizing the validity of the fake image 

generated by the generator [14][15]. The reconstruction loss 

has been weighted in the generator to stress how much more 

similar the generated image has to be compared with the 
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original one. This gives a weight of 50 on the reconstruction 

loss. 

 

G. Best Model 

If it's already in the fine tuning phase, it generates the 

weight for the trained model by combining weights from both 

models - the generator and discriminator in a file with the 

extension of.pth. The essence of storage will have the model 

at hand with any instance of reuse because of avoidance from 

retraining challenges. After saving the trained model used 

from an inference on the testing dataset,. The best model 

learned during training can be used for evaluation on the test 

data in order to measure its performance in producing better 

images according to predefined metrics such as PSNR, SSIM, 

and LPIPS. 

 

H. Evaluation and Validation 

Model evaluation and validation are performed using three 

main metrics, namely PSNR (Peak Signal-to-Noise Ratio), 

SSIM (Structural Similarity Index Measure), and LPIPS 

(Learned Perceptual Image Patch Similarity). These three 

metrics were chosen to measure the quality of image 

reconstruction from various aspects, including pixel similarity, 

visual structure, and human perception. 

1) PSNR is used to measure the pixel similarity between the 

reconstructed image and the ground truth. The higher the 

PSNR value, the smaller the difference between the two 

images [16]. PSNR focuses on pixel errors, but does not 

consider the similarity of visual structures. PSNR is 

defined by the Formula 1: 

 

𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)          (1) 

 

Where : 

• MAX is the maximum pixel value (e.g. 255 for 8-bit 

images) 

• MSE (Mean Squared Error) between the 

reconstructed image and the ground truth. 

2) SSIM The SSIM evaluates the structural similarity of the 

reconstructed image and the ground truth, taking into 

consideration the aspects of luminance, contrast, and 

structure. SSIM more accurately reflects human-perceived 

visual quality compared to PSNR [17]. SSIM is defined by 

Formula 2: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 +𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2 +𝜇𝑦

2  +𝐶1)(𝜎𝑥
2 +𝜎𝑦

2 +𝐶2)
          (2) 

 

Where : 

• 𝜇𝑥 and 𝜇𝑦 is the local average. 

• 𝜎𝑥
2 and 𝜎𝑦

2 is the local variance. 

• 𝜎𝑥𝑦 is the covariance between x and y. 

• 𝐶1 dan 𝐶2 used to stabilize the calculation when 

the denominator value approaches zero. 

3) LPIPS is a perception-based metric that measures visual 

similarity between images based on representational 

features in deep learning networks [18]. Unlike PSNR and 

SSIM, LPIPS compares images on a patch level using the 

trained network. The smaller the LPIPS is, the more 

perceptually similar the images are. Formally, LPIPS can 

be defined as: a feature distance between two images in the 

representation space as defined in Formula 3: 

 

𝑑(𝑥, 𝑥()) =  ∑
1

𝑊𝑗𝐻𝑗
∑ ‖𝜙𝑗(𝑥) − 𝜙𝑗(𝑥())‖

2

2
ℎ,𝑤𝑗         (3) 

 

Where : 

• 𝑑(𝑥, 𝑥()) Represents the LPIPS score between 

image x (prediction) and 𝑥() (ground truth). 

• 𝜙𝑗(𝑥) i.e. The representation of image feature x 

at layer j of the backbone network. 

• ‖ ∙ ‖2
2 The L2 squared norm, which calculates the 

difference between features. 

• 𝑊𝑗𝐻𝑗 is the feature dimension at layer j 

 

With 𝜙𝑗(∙) defined as in Formula 4: 

 

𝜙𝑗(𝑥) = 𝑤𝑗 ⊙ 𝑜ℎ𝑤
𝑗

(𝑥)           (4) 

 

Where :  

• 𝑜ℎ𝑤
𝑗

(𝑥) is the raw feature output at spatial 

coordinates h,w in layer j. 

• ⊙ is an element-wise operation (usually 

multiplication). 

• 𝑤𝑗  which is the weight applied to the feature for 

human perception adjustment. 

 

 

III. RESULTS AND DISCUSSION 

A. Model Training Results 

 The StarGAN v2 model managed to produce the 

reconstructed images of damaged ancient Javanese 

manuscripts after the 50- and 100-epoch training process. 

Figure 4 and Figure 5 show the loss graphs of the generator 

and discriminator at the 50th and 100th epochs. 

 

 
Figure 4. Graph of Generator and Discriminator Loss at 

Epoch 50 
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Figure 5. Graph of Generator and Discriminator Loss at 

Epoch 100 

 

Until the 50th epoch, it gives D loss as 1.0382 while the G 

loss is reading as 7.8943. From this low D loss, it is very 

evident that the discriminator has learned very well to tell 

between a reconstructed image and a ground truth. On the 

other hand, considering its high G loss values, it still seems 

rather challenging for the generator to be good at generating 

images that should more or less look like their corresponding 

targets. 

After training is extended to the 100th epoch, it is recorded 

that the D Loss value is at 0.8166, showing an improvement 

whereby the discriminator can better discriminate on images. 

Meanwhile, for G Loss, it stood at 6.9848, which has dropped 

significantly since the beginning of training. The above 

depicts a healthy competition between the generator and the 

discriminator; however, the generator will need more 

optimization to generate much more realistic images. 

 

B. Reconstruction Results 

Figure 6 and Figure 7 show the image reconstruction 

results at the 50th and 100th epochs, respectively. These 

images show the model's ability to reconstruct damaged text 

into an image that is close to the ground truth. 

 

 
Figure 6. Model Reconstruction Results at the 50th 

Epoch. 

 

At the 50th epoch, the model was already capable of 

reconstructing most of the text structure with fairly good 

accuracy, although there was some minor noise at certain 

characters. The resulted image shows that the model had been 

able to comprehend the pattern and structure of Old Javanese, 

including in areas that usually received significant distortion. 

 
Figure 7. Model Reconstruction Results at the 100th 

Epoch 

 

After training up to the 100th epoch, the reconstruction 

results significantly improved. The model manages to produce 

clearer and closer images to the ground truth with less noise. 

That means longer training has a positive effect on the quality 

of reconstruction.  

 

C. Image Quality Matrix Evaluation 

The PSNR, SSIM, and LPIPS metrics are calculated to 

assess the quality of the reconstructed images. Each metric's 

evaluation result from the average over the testing data is 

included in Table 5, using two schemes. 

 

Table 5. Image Quality Evaluation Results 

Epoch PNSR SSIM LPIPS 

50 16.1234 0.8374 0.1020 

100 17.5588 0.8519 0.1051 

 

Results of evaluation as shown in Table 5 indicate an 

increase for all metrics of evaluation from the 50th to the 

100th epoch. At the 50th epoch, the PSNR value was 16.1234 

dB, which means the quality of the image reconstructed was 

still relatively poor. However, the PSNR value increases to 

17.5588 dB after continuing the training until the 100th epoch, 

which indicates that the resulting image is closer to the 

original image with low noise. 

In addition, the SSIM at the 50th epoch is 0.8374, which 

can be argued as a very good structural similarity between the 

reconstructed image and ground truth. The increased value of 

0.8519 in the 100th epoch hence shows that the model is 

getting better at maintaining the structure and details of the 

original image. While the LPIPS at the 50th epoch was 

0.1020, which already had good perceptual similarity, at the 

100th epoch it slightly improved to 0.1051. Although a small 

improvement, it is apparent that the model can further 

generate perceptually better images. Overall, evaluation 

results illustrate that the StarGAN v2 model improves the 

quality of the reconstructed images as more epochs are used. 

While this represents a considerable improvement, further 

enhancements can be made to decrease the LPIPS value even 

further and increase the PSNR. Model optimization and 



141 
 

TEKNIKA, Volume 14(1), March 2025, pp. 135-141  

ISSN 2549-8037, EISSN 2549-8045 

Wibowo, K. C. et al.: Ancient Javanese Manuscript Reconstruction Using Generative 

Adversarial Network with StarGAN v2 Variations  

 

DOI: 10.34148/teknika.v14i1.1182 

exploring data augmentation techniques would possibly make 

for better results in future research. 

 

 

IV. CONCLUSION 

This paper successfully applied the StarGAN v2 model to 

reconstruct damaged ancient Javanese manuscripts. The result 

of training the model shows that it is able to generate high-

quality reconstructed images with significant improvements 

in the evaluation metrics. 

In the training process, two types of loss functions are 

used: adversarial loss and reconstruction loss. In this case, 

adversarial loss will indicate that a generator is getting better 

at generating images considered genuine by a discriminator, 

while reconstruction losses indicate how well the generated 

images are close to the ground truth. The adversarial loss and 

reconstruction loss values, at the end of training, show a 

consistent decrease, hence showing that the model has learned 

well to reconstruct missing or corrupted images. 

Regarding the evaluation metrics, the PSNR value 

increased from 16.1234 dB at the 50th epoch to 17.5588 dB 

at the 100th epoch, reflecting a significant improvement in the 

quality of the images. The SSIM increased from 0.8374 to 

0.8519, showing the structural similarity between the 

generated image and the ground truth. However, the LPIPS 

increased from 0.1020 to 0.1051, which indicated that though 

there is an improvement, as far as perceptivity is concerned, 

further development must be made. 

In general, this study has shown the effectiveness of the 

StarGAN v2 model in reconstructing ancient Javanese 

manuscripts, with promising results both in image quality and 

evaluation metrics. Further research is recommended to 

explore more diverse data augmentation techniques and 

model optimization for better reconstruction results. 
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