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Abstract 

 

Software defect prediction is crucial used for detecting possible defects in software before they manifest. While machine learning 

models have become more prevalent in software defect prediction, their effectiveness may vary based on the dataset and 

hyperparameters of the model. Difficulties arise in determining the most suitable hyperparameters for the model, as well as 

identifying the prominent features that serve as input to the classifier. This research aims to evaluate various traditional machine 

learning models that are optimized for software defect prediction on NASA MDP (Metrics Data Program) datasets. The datasets 

were classified using k-nearest neighbors (k-NN), decision trees, logistic regression,  linear discriminant analysis (LDA), single 

hidden layer multilayer perceptron (SHL-MLP), and Support Vector Machine (SVM). The hyperparameters of the models were 

fine-tuned using random search, and the feature dimensionality was decreased by utilizing principal component analysis (PCA). 

The synthetic minority oversampling technique (SMOTE) was implemented to oversample the minority class in order to correct 

the class imbalance. k-NN was found to be the most suitable for software defect prediction on several datasets, while SHL-MLP 

and SVM were also effective on certain datasets. It is noteworthy that logistic regression and LDA did not perform as well as 

the other models. Moreover, the optimized models outperform the baseline models in terms of classification accuracy. The 

choice of model for software defect prediction should be based on the specific characteristics of the dataset. Furthermore, 

hyperparameter tuning can improve the accuracy of machine learning models in predicting software defects. 

 

Keywords: Machine Learning Models, Software Defect Prediction, Random Search, Principal Component Analysis, 

Hyperparameter Tuning. 

 

 

 

 
I. INTRODUCTION 

As technology has advanced and consumer expectations 

for software have risen, the software development process has 

gotten increasingly intricate [1]. As a result, software engineers 

must now focus on improving their ability to detect and 

prevent software defects [2]. Software Defect Prediction 

(SDP) is a crucial technique that identifies potential software 

defects before they occur. In software engineering, SDP is an 

important and challenging task. Better software quality and 

reduced development costs are both linked to early defect 

detection in software development [3], [4].  

Recently, machine learning models have been widely used 

to detect defects in software. This is because machine learning 

models have the ability to find patterns automatically from data 

by recognizing defects in software [5]. Predicting software 

defects using machine learning models has been demonstrated 

to be useful in several studies, such as decision tree (DT) [6],  

Naïve Bayes (NB) [7], K-nearest Neighbors (k-NN) [8], [9], 

Artificial Neural Network (ANN) [10], and Support Vector 

Machine (SVM) [11].  Different datasets and model 

hyperparameters can result in widely varying model 

performances in machine learning. A common challenge in 

machine learning is selecting the optimal model 

hyperparameters. However, almost all studies in SDP using 

machine learning models did not perform hyperparameter 

tuning to obtain the optimal model hyperparameters.  

Another issue in SDP using a machine learning model is 

selecting prominent features to use as input to the classifier. 

The optimal feature subset has been chosen to use several 

feature selection techniques to avoid a decline in the 

performance of classification models for SDP caused by 

redundant and irrelevant features, as reported in [12]–[14]. The 

quality of results obtained by feature selection techniques is 

very dependent on datasets. Principal Component Analysis 

(PCA) is another approach that can be used to reduce irrelevant 

features. In machine learning, PCA reduces data 

dimensionality while maintaining as much information as 

possible to find patterns [15]. To achieve optimal classification 
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performance, however, it is necessary to determine the optimal 

number of selected components. 

This paper compares the optimized machine learning 

models for SDP on NASA MDP (Metrics Data Program) 

datasets [16]. Some traditional machine learning models were 

used to classify 12 datasets from NASA MDP datasets: k-

nearest neighbors (k-NN), decision trees (DT), logistic 

regression (LR), linear discriminant analysis (LDA), single 

hidden layer multilayer perceptron (SHL-MLP), and support 

vector machine (SVM). The hyperparameters of the model 

were optimized using random search [17] to obtain the best 

classifier for each dataset. Before being input to the classifier, 

the dimensionality of the features was reduced using PCA. The 

number of selected components was also optimized using 

random search. The synthetic minority oversampling 

technique (SMOTE) was used as an oversampling strategy for 

the minority class to deal with unbalanced samples on NASA 

MDP datasets [18]. 

The remaining sections of the paper are structured as 

follows: Section two provides a theoretical foundation for the 

study by reviewing the relevant literature. Section three 

explains the methods used in this study. Following that, the 

findings and discussion of their implications will be presented 

in Section 4. Finally, a summary of the key findings and 

suggestions for avenues for future research will be provided in 

the last section. 

 

 

II. LITERATURE  REVIEW 

Iqbal et al. [5] analyzed the effectiveness of several 

machine learning models for SDP using NASA MDP datasets. 

The performance of ten machine learning models was 

measured using a variety of evaluation metrics. These models 

included k-NN, DT, LR, MLP, SVM, radial basis function 

(RBF), one rule (OR), kStart (PART), and random forest (RF). 

The findings indicate that the metrics used to evaluate the 

performance of the model change depending on the dataset, 

except for the ROC area score. Based on the ROC area score, 

RF achieved higher performance compared to other models.  

A novel method for SDP based on a weighted naive Bayes 

classifier was proposed by Ji et al. [6]. The authors leverage 

the concept of information diffusion to assign weights to the 

features used in the classifier, resulting in improved prediction 

accuracy compared to traditional naive Bayes classifiers. 

While the approach shows promise, the authors' experimental 

evaluation could benefit from larger and more diverse datasets 

to better demonstrate the method's effectiveness. 

Marian et al. [7] proposed a new approach to predicting 

software defects using fuzzy decision trees. The authors claim 

that this approach outperforms standard DT in AUC scores. 

While the concept of fuzzy decision trees is intriguing, the 

study lacks sufficient information about the implementation 

and evaluation processes, such as the selection of input features 

and the selection criteria for the best model. In addition, the 

dataset used in the experiments is limited to two software 

projects, which casts doubt on the generalizability of the 

proposed method. 

Hammad et al. [8] presented a machine learning approach 

to predict software faults using k-NN. The authors conducted 

experiments and achieved promising results, with an accuracy 

rate of up to 87%. Kumar et al. [9] proposed a new approach 

for predicting software defects in Aspect-Oriented 

Programming (AOP). The authors use a combination of fuzzy 

c-means clustering with genetic algorithms (FCM-GM) and k-

NN. The experimental results show that the proposed FCM-

GM outperforms traditional FCM and k-NN. However, the 

classification models in [8], [9] were only evaluated using five 

datasets and one dataset from NASA MDP datasets, 

respectively. 

Rong et al. [10] proposed a new method for software defect 

prediction using SVM and a bat algorithm with centroid 

strategy (CBA). CBA was used to optimize the parameters of 

SVM to enhance the accuracy of the prediction model. The 

central concept of the optimization algorithm involves treating 

SVM parameters as particles in CBA, which then undergoes 

self-updating until the algorithm achieves its final condition. 

The experimental results show that the proposed method 

outperforms other classifiers, including standard SVM. 

However, the proposed method was only evaluated with four 

datasets from the NASA MDP datasets. 

Jayanthi et al. [11] proposed a method for SDP that uses an 

ANN and an enhanced version of PCA. Their improvement 

involves merging PCA with maximum likelihood in order to 

minimize the PCA reconstructed data. The experimental 

results reveal that the proposed approach surpasses other 

existing models, reaching an AUC of 97.20% and substantially 

improving classification accuracy. However, the authors did 

not explain how to decide on the number of principal 

components chosen in PCA and the ANN architecture used for 

each dataset, despite claiming that their method achieves good 

performance. 

Nevertheless, most studies using traditional machine 

learning models for SDP did not perform hyperparameter 

tuning to obtain the best classifier. The number of components 

used in PCA was also not optimized so that the best 

performance was achieved by each model. Therefore, this 

research attempts to compare the performance of several 

traditional machine learning models by performing 

hyperparameter tuning both on the classifier and PCA to obtain 

the best classification performance. 
 

 

III.  METHODS 

This research involved multiple steps to conduct a 

comparative analysis of optimized traditional machine 

learning models. These procedures consisted of gathering a 

dataset, oversampling the minority class, using PCA for 

dimensionality reduction, training various traditional machine 

learning models for classification with hyperparameter tuning, 

and evaluating the models as illustrated in Figure 1. The 

subsequent subsections provide a comprehensive explanation 

of each step. 
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Figure 1. Steps for Conducting the Research. 

 

A. Dataset 

This research employed the dataset from the NASA 

Metrics Data Program (MDP) to evaluate the classification 

model used. The NASA MDP is a dataset about software 

defects in different NASA projects. This includes information 

like how many defects were found in each project, how big the 

code base is, and how much work it took to make the software. 

Software engineers frequently use this dataset to examine how 

different software metrics relate to software defects. The MDP 

dataset comprises both public and confidential data. The 

former provides information on 24 NASA software projects, 

while the latter contains additional project information that is 

accessible only to authorized users [19]. This research used the 

clean version of NASA MDP datasets from D” collection as 

described in [16]. The datasets consisted of datasets from 12 

projects, namely CM1, JM1, KC1, KC3, MC1, MC2, MW1, 

PC1, PC2, PC3, PC4, and PC5. The number of features varies 

in each dataset but has the same number of classes, namely 

defective Y and defective N. Table 1 shows the detailed 

description of the 12 datasets used in this research. 
 

Table 1. The Description of 12 NASA MDP  

Dataset 
 Instances  

Features 
Total Non-defective  Defective  

CM1 327 285 42 37 

JM1 7782 6110 1672 21 

KC1 1183 869 314 21 

KC3 194 158 36 39 

MC1 1988 1942 46 38 

MC2 125 81 44 39 

MW1 253 226 27 37 

PC1 705 644 61 37 

PC2 745 729 16 36 

PC3 1077 943 134 37 

PC4 1287 1110 177 37 

PC5 1711 1240 471 38 

 

B. Oversampling Strategy 

As can be seen in Table 1, the number of defective 

instances is significantly smaller than the number of non-

detective instances in all datasets. This condition is considered 

a class imbalance problem. If this condition is not addressed, it 

will affect the performance of the machine learning model. 

Therefore, this research applied an oversampling strategy to 

the minority class using the synthetic minority oversampling 

technique (SMOTE) [18]. SMOTE is a popular oversampling 

technique used in machine learning to address the class 

imbalance problem. SMOTE works by creating synthetic 

instances of the minority class by interpolating between the 

instances of the minority class. Specifically, SMOTE selects a 

minority class instance and finds its k-nearest neighbors in the 

feature space. It then creates synthetic instances by randomly 

selecting one of the k-neighbors and interpolating between the 

minority sample and the selected neighbor. This creates a new 

instance that is similar to the minority class but is not an exact 

copy of any existing instance. 

 

C. Dimensionality Reduction 

The presence of numerous features for training a machine 

learning model does not guarantee its good performance. 

Furthermore, a high number of features can also increase the 

amount of time and computational resources needed during the 

training process [20]. Therefore, this research employed 

principal component analysis (PCA) [15] to reduce the 

dimensionality of features. PCA is a commonly used technique 

in machine learning for dimensionality reduction. PCA is an 

unsupervised dimensionality reduction method that can reduce 

the high dimensionality of features into fewer significant and 

uncorrelated principal components while retaining the 

essential information of the original features [20]. PCA seeks 

to identify the most significant features or variables in a dataset 

and depict them in a space with fewer dimensions.   

Reducing feature dimensions is done by transforming the 

features into new variables that are not correlated with each 

other but can still explain as much of the variation in the 

original data as possible. These variables are called principal 

components. PCA employed the covariance matrix of the 

original data to determine the principal components and the 

amount of variance explained by each component by 

calculating the eigenvectors and the eigenvalues of the matrix, 

respectively. The dataset can be projected onto a lower n-

dimensional space by choosing only the top n eigenvectors, 

where n is the desired number of dimensions (primary 

components). In this research, the value of n was determined 

using a random search from {𝑛 ∈ ℕ|5 ≤ 𝑛 ≤ 𝑁} such that the 

best performance of the model is achieved, where 𝑁 is the 

number of features. Before being inputted to the classifier 

selected components were scaled into intervals [0,1] to avoid 

the dominance of certain components using equation (1), 

 

  𝑥𝑠 =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
                                                          (1) 

 

where 𝑥𝑠 is scaled component, 𝑥 is the original component, 

min (𝑥) and max (𝑥) are the minimum and maximum of the 

selected component, respectively. 

 

D. Classification 

In this research, six traditional machine learning models 

were employed to classify 12 datasets from NASA MDP 

datasets into two classes: defective Y and defective N. The 

models used include k-nearest neighbors (k-NN), logistic 

regression (LR), decision tree (DT), linear discriminant 

analysis (LDA), support vector machine (SVM), and single 

hidden layer multi-layer perceptron (SHL-MLP) [21]. 
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Parameters are a part of every model; these are not learned by 

the model during training but rather are established by the user 

beforehand. Hyperparameters are another name for this type of 

parameter. Therefore, the model's hyperparameters must be 

adjusted for optimal performance. 

This research employed random search [17] to determine 

the optimum hyperparameters for each model. Finding the 

optimal value of a function with random search optimization is 

a straightforward and efficient process. Several points are 

generated randomly at predetermined intervals. The function 

value is then evaluated at these points to determine the 

optimum point. This process is carried out iteratively until the 

stopping criterion is met. Random search optimization is a 

simple method that is easy to implement because it does not 

require a lot of information about the functions being 

optimized including function derivatives. The tuned 

hyperparameters and the search domains for each model are 

tabulated in Table 2. 

 

E. Model Evaluation 

To evaluate the classification models, each dataset was 

divided into two parts, which are the training data and the 

testing data, with a ratio of 70:30, using stratified random 

subsampling [22]. Stratified random subsampling ensured that 

every class in the dataset was equally represented in both the 

training and testing datasets, maintaining the same proportion 

as the original dataset. The main objective of employing this 

method was to ensure that the training and testing datasets 

reflected the overall dataset in its entirety. The model was then 

trained and evaluated using the training data and the testing, 

respectively. The model's performance was also measured 

using the testing data.  

  

Table 2. Tuned Hyperparameters and Search Domains 

Model 
Hyper-

parameter 
Description 

Search  

Domain 

k-NN k 
The number of 

nearest neighbors 
[1,10] 

LR 

Penalty Norm of penalty 

{'l1', 'l2', 

'elasticnet', 

'none'} 

C 
Regularization 

parameter 
(1,1000) 

Solver 
Optimization 

algorithm 

{'sag', 'saga', 

'newton-

cholesky', 'lbfgs', 

'liblinear', 

'newton-cg' } 

DT Criterion 
Measurement 

function for split 

quality 

{'gini', 'entropy'} 

LDA Solver 
Estimation 

algorithms 

{'svd', 'lsqr', 

'eigen'} 

SVM 

C 
Regularization 

parameter 
(1,1000) 

Kernel Kernel function 
{'rbf','poly', 

'sigmoid'} 

Gamma 
Kernel 

coefficient 
(0.01,1) 

SHL-

MLP 

Activation 
The hidden 

layer’s activation 

function  

{'identity', 

'logistic','tanh', 

'relu'} 

Neurons 
The number of 

neurons in the 

hidden layer 

{5,6, … ,1000} 

Solver 
Optimization 

algorithm 

{'lbfgs','sgd', 

'adam'} 

 

Several metrics were employed to evaluate the 

performance of the models using the testing dataset, including 

accuracy, precision, recall, and F1 score. Equation (2) was 

used to determine the classification accuracy, which is the 

proportion of right predictions throughout the whole dataset, 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                       (2) 

 

where 𝑇𝑃 is the number of instances that are actually positive 

and classified as positive, 𝑇𝑁 is the number of instances that 

are actually negative and classified as negative, 𝐹𝑃 is the 

number of instances that are actually negative but classified as 

positive, and 𝐹𝑁 is the number of instances that are actually 

positive but classified as negative. Precision measures the 

proportion of true positive predictions out of all positive 

predictions and is calculated using equation (3).  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                              (3) 

 

Recall measures the proportion of true positive predictions 

out of all actual positive instances and is calculated using 

equation (4). 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                     (4) 

 

Lastly, the F1 score is the harmonic mean of precision and 

recall and is calculated using equation (5). 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                    (5) 

 

In this research, all models were trained and evaluated 

using Python language programming with some open source 

Python libraries, namely pandas [23], imbalanced-learn [24], 

and Scikit-learn [25].  Pandas were used to import the dataset 

from a source file. Imbalanced-learn was used to perform 

oversampling on minority classes using SMOTE. Scikit-learn 

was used for training and testing all machine learning models, 

as well as tuning the hyperparameters. 

 

 

IV. RESULTS AND DISCUSSION 

This section presents the experiment results that aimed to 

compare the performance of various traditional machine 

learning models in predicting software defects. The accuracy, 
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precision, recall, and F1 score of each model that are used to 

evaluate the effectiveness of the model in predicting software 

defects are presented in this section. The classification 

accuracy of the optimized models on all datasets is tabulated 

in Table 3.  

As can be seen in Table 3, k-NN achieved the highest 

accuracy on seven datasets, which are JM1 77.91%, KC1 

79.31%, KC3 91.58%, MC1 98.97%, MC2 83.67%, PC3 

93.46%, and PC5 83.06%. In second place, SVM achieved the 

highest accuracy on four datasets, which are CM1 97.66%, 

KC3 91.58%, MW1 98.53%, and PC4 93.69%. In third place, 

SHL-MLP achieved the highest accuracy on three datasets, 

which are MC1 98.97%, PC1 96.12%, and PC3 93.46%. 

Logistic regression and decision tree achieved the highest 

accuracy only on a dataset, MC2 83.67% and PC2 98.86%, 

respectively. While LDA never achieved the highest accuracy. 

Based on the accuracy scores in Table 3, it can be concluded 

that k-NN consistently performs well across most datasets, 

achieving high accuracy rates. Additionally, SVM and SHL-

MLP also demonstrate competitive performance in terms of 

accuracy. 

 

Table 3. The Accuracy of Optimized Models on All Datasets 

Dataset 

Accuracy (%) 

k-NN LR DT LDA SVM 
SHL- 

MLP 

CM1 96.49 80.12 87.13 84.21 97.66 97.08 

JM1 77.91 64.24 71.47 63.99 67.35 71.09 

KC1 79.31 63.79 73.37 65.13 71.84 73.37 

KC3 91.58 85.26 82.11 83.16 91.58 88.42 

MC1 98.97 87.05 97.68 85.76 98.63 98.97 

MC2 83.67 83.67 73.47 69.39 77.55 75.51 

MW1 95.59 80.15 93.38 80.15 98.53 97.06 

PC1 95.09 86.56 91.21 83.98 95.35 96.12 

PC2 98.17 92.92 98.86 91.78 98.63 97.95 

PC3 93.46 81.98 87.10 80.92 88.87 93.46 

PC4 91.89 86.49 89.19 82.43 93.69 92.49 

PC5 83.06 71.77 78.63 71.51 79.17 76.21 

 

Table 4 shows the precision of the optimized models on all 

datasets. As can be seen in Table 4, k-NN achieved the highest 

precision on seven datasets, which are JM1 78.51%, KC1 

79.70%, KC3 91.64%, MC1 98.99%, MC2 83.86%, PC3 

93.70%, and PC5 83.28%. In second place, SVM achieved the 

highest precision on four datasets, which are CM1 97.68%, 

KC3 91.64%, MW1 98.57%, and PC4 94.05%. In third place, 

SHL-MLP achieved the highest precision on two datasets, 

which are MC1 98.99% and PC1 96.27%. The decision tree 

achieved the highest precision only on a dataset PC2 98.86%. 

While logistic regression and LDA never achieved the highest 

precision. Based on the precision values in Table 4, it can be 

concluded that k-NN consistently achieves high precision 

values across various datasets. These results indicate the 

effectiveness of k-NN in correctly identifying positive 

instances across all positive predictions. In addition, SVM and 

SHL-MLP also perform well in most of the datasets. However, 

when compared, LR, DT, and LDA show relatively lower 

precision values. 

Table 5 shows the recall of the optimized models on all 

datasets. As can be seen in Table 5, k-NN achieved the highest 

recall on seven datasets, which are JM1 77.91%, KC1 79.31%, 

KC3 91.60%, MC1 98.97%, MC2 83.75%, PC3 93.46%, and 

PC5 83.06%. In second place, SVM achieved the highest recall 

on four datasets, which are CM1 97.67%, KC3 91.60%, MW1 

98.53%, and PC4 93.69%. In third place, SHL-MLP achieved 

the highest recall on three datasets, which are MC1 98.97%, 

PC1 96.13%, and PC3 93.46%. The decision tree achieved the 

highest recall only on a dataset PC2 98.86%. While logistic 

regression and LDA never achieved the highest recall. Based 

on the recall values in Table 5, it can be concluded that k-NN 

consistently achieves the highest recall rate across all datasets, 

followed by SVM and SHL-MLP. Logistic Regression, DT, 

and LDA generally show lower recall rates compared to k-NN, 

SVM, and SHL-MLP. These results indicate k-NN is more 

effective in correctly identifying positive examples across all 

actual positive data.  

 

Table 4. The Precision of Optimized Models on All Datasets 

Dataset 

Precision (%) 

k-NN LR DT LDA SVM 
SHL- 

MLP 

CM1 96.70 80.26 87.31 85.27 97.68 97.22 

JM1 78.57 65.17 71.53 64.55 68.03 71.09 

KC1 79.70 63.88 73.85 65.66 72.08 73.38 

KC3 91.64 85.31 82.24 83.22 91.64 88.43 

MC1 98.99 87.27 97.69 86.52 98.66 98.99 

MC2 83.86 83.67 73.82 69.42 77.59 75.50 

MW1 95.95 80.31 93.47 80.15 98.57 97.10 

PC1 95.35 86.58 91.22 83.98 95.65 96.27 

PC2 98.24 93.80 98.86 92.94 98.67 98.03 

PC3 93.70 82.25 87.18 81.11 89.34 93.66 

PC4 92.51 86.49 89.28 82.79 94.05 92.57 

PC5 83.28 72.14 78.63 71.73 79.19 76.21 

 

Table 5. The Recall of Optimized Models on All Datasets 

Dataset 

Recall (%) 

k-NN LR DT LDA SVM 
SHL-

MLP 

CM1 96.51 80.14 87.15 84.26 97.67 97.09 

JM1 77.91 64.24 71.47 63.99 67.35 71.09 

KC1 79.31 63.79 73.37 65.13 71.84 73.37 

KC3 91.60 85.28 82.07 83.13 91.60 88.43 

MC1 98.97 87.05 97.68 85.76 98.63 98.97 

MC2 83.75 83.67 73.58 69.42 77.50 75.50 

MW1 95.59 80.15 93.38 80.15 98.53 97.06 
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PC1 95.10 86.57 91.22 83.98 95.36 96.13 

PC2 98.17 92.92 98.86 91.78 98.63 97.95 

PC3 93.46 81.98 87.10 80.92 88.87 93.46 

PC4 91.89 86.49 89.19 82.43 93.69 92.49 

PC5 83.06 71.77 78.63 71.51 79.17 76.21 

 

Table 6 shows the F1 score of the optimized models on all 

datasets. As can be seen in Table 6, k-NN achieved the highest 

F1 score on six datasets, which are JM1 77.78%, KC1 79.24%, 

KC3 91.58%, MC1 98.97%, MC2 83.67%, and PC5 83.04%. 

In second place, SVM achieved the highest F1 score on four 

datasets, which are CM1 97.66%, KC3 91.58%, MW1 

98.53%, and PC4 93.69%. In third place, SHL-MLP achieved 

the highest F1 score on three datasets, which are MC1 98.97%, 

PC1 96.12%, and PC3 93.46%. Logistic regression and 

decision tree achieved the highest F1 score only on a dataset 

MC2 83.67% and PC2 98.86%, respectively. While logistic 

regression and LDA never achieved the highest F1 score. 

Based on the F1 scores in Table 6, it can be concluded that k-

NN generally performs well and LR and LDA achieve lower 

scores. In addition, SVM and SHL-MLP demonstrate good 

performance on most datasets but are not consistently superior 

to other algorithms. These results indicate k-NN performs well 

in terms of both correctly identifying positive instances and 

capturing all positive instances. 

 

Table 6. The F1 Score of Optimized Models on All Datasets 

Dataset 

F1 Score (%) 

k-NN LR DT LDA SVM 
SHL-

MLP 

CM1 96.49 80.10 87.12 84.10 97.66 97.07 

JM1 77.78 63.68 71.45 63.64 67.04 71.08 

KC1 79.24 63.73 73.24 64.84 71.76 73.37 

KC3 91.58 85.26 82.07 83.14 91.58 88.42 

MC1 98.97 87.03 97.68 85.69 98.63 98.97 

MC2 83.67 83.67 73.43 69.39 77.51 75.50 

MW1 95.58 80.12 93.38 80.15 98.53 97.06 

PC1 95.08 86.56 91.21 83.98 95.34 96.12 

PC2 98.17 92.89 98.86 91.72 98.63 97.94 

PC3 93.45 81.94 87.10 80.89 88.84 93.46 

PC4 91.86 86.49 89.18 82.38 93.68 92.49 

PC5 83.04 71.66 78.63 71.43 79.16 76.21 

 

The results presented in Tables 3-6 provide insights into the 

performance of various optimized traditional machine learning 

models for software defect prediction. It can be observed that 

k-NN, SVM, and SHL-MLP are the most effective algorithms 

for predicting software defects, based on the highest accuracy, 

precision, recall, and F1 scores achieved on several datasets. k-

NN outperformed all other algorithms in terms of accuracy, 

precision, recall, and F1 score on seven datasets, including 

JM1, KC1, KC3, MC1, MC2, PC3, and PC5. This suggests 

that k-NN is a suitable algorithm for software defect prediction 

and can be relied upon for accurate and precise predictions on 

these datasets. 

SVM achieved the highest accuracy, precision, recall, and 

F1 score on four datasets, including CM1, KC3, MW1, and 

PC4. SHL-MLP achieved the highest accuracy, precision, 

recall, and F1 score on three datasets, including MC1, PC1, 

and PC3. This suggests that SVM and SHL-MLP are other 

effective models for software defect prediction and can be used 

in scenarios where k-NN may not be the best choice. It is also 

interesting to note that logistic regression and LDA never 

achieved the highest accuracy, precision, recall, or F1 score on 

any of the datasets. This suggests that these algorithms may not 

be the best choice for software defect prediction, at least in the 

context of the datasets used in this research. 

Furthermore, most of the classification accuracy of the 

optimized machine learning models significantly outperforms 

the baseline models reported in [5] which do not employ 

hyperparameter tuning, as tabulated in Table 7. For example, 

the accuracy of optimized k-NN ranges from 77.91% to 

98.97%. On the other hand, the accuracy achieved by k-NN in 

[5] ranges from 69.34% to 97.27%. Similarly, the optimized 

SVM achieved higher accuracy between 79.31% and 98.53%, 

when compared to the SVM accuracy reported in [5], which is 

between 62.16% and 90.82%. Therefore, the optimized models 

are much more accurate and reliable than the baseline models. 

 

Table 7. The Accuracy of Unoptimized Models on All 

Datasets Reported in [5] 

Dataset 

Accuracy (%) 

k-NN DT SVM 
SHL-

MLP 

CM1 77.55 77.55 90.82 86.73 

JM1 73.96 79.10 79.19 80.35 

KC1 69.34 75.64 75.36 77.36 

KC3 75.86 75.86 82.76 82.76 

MC1 97.27 97.61 97.61 97.61 

MC2 72.97 64.86 62.16 64.86 

MW1 86.67 86.67 89.33 90.67 

PC1 92.65 93.14 95.10 96.57 

PC2 96.77 97.70 97.70 96.77 

PC3 24.00 86.39 86.39 83.86 

PC4 85.83 86.88 88.19 89.76 

PC5 73.03 75.00 74.21 74.21 

 

 

V. CONCLUSION 

This paper presents a comparative study of optimized 
machine learning models for software defect prediction on 
NASA MDP datasets. The hyperparameters of models were 
optimized using random search to obtain the best classifier for 
each dataset. Before input to the classifier, the dimensionality 
of features was reduced using PCA, and the number of selected 
components was also optimized using random search. The 
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experiment results showed that k-NN achieved the highest 
accuracy, precision, and recall on the majority of the datasets, 
followed by SVM and SHL-MLP. These findings suggest that 
optimized machine learning models, combined with 
dimensionality reduction, can improve the effectiveness of 
software defect prediction, which can reduce costs and 
improve the quality of software products. To improve the 
performance of traditional machine learning models, the use of 
classification ensembles should be considered for further 
research. 
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