
102

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

DOI: 10.34148/teknika.v13i1.769

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

Roy Hanafi1, Abd Haq2, Ninik Agustin3*

1,2,3Informatics Study Program, Faculty of Mathematic and Computer Science, Universitas Nahdlatul Ulama Al

Ghazali, Cilacap, Central Java, Indonesia

Email: 1hanafiroy032@gmail.com, 2abdulhaq@unugha.id, 3*ninik.agustin@unugha.id

 (Received: 26 Jan 2024, revised: 1 Mar 2024, accepted: 7 Mar 2024)

Abstract

In the rapidly developing digital age, websites have become indispensable for interaction, information dissemination and

transaction. To improve the performance of web applications, choosing the right rendering technology is critical. Next.js is a

framework designed to overcome React's limitations in server-side rendering. This study investigates the effectiveness of Client-

side Rendering (CSR), Server-side Rendering (SSR), and Static Site Generation (SSG) on the Next.js-based Filmku website

using the loading time method. The study concentrates on page loading speed, complete page rendering speed, and user

experience. The authentication page takes 422 ms to complete the CSR process, which is 57.41% slower than the SSG finish

time of 180 ms and 34.88% slower than SSR, which completes the authentication page in 274 ms. On the Profile page, SSG

completes the page rendering process much faster, taking only 524 ms, which is 25.79% faster than SSR's completion time of

706 ms and even 13.75% faster than CSR's completion time of 608 ms. The SSG rendering method completed in 1,135 ms on

the main page, which is 15.93% faster than the CSR completion time of 1,350 ms and 25.57% faster than the SSR completion

time of 1,525 ms. It is evident that SSG has a faster rendering speed compared to the other methods. However, it should be noted

that CSR may result in slower initial page load times. SSR can provide stable rendering times, but it can also burden the server

as every client request is fully processed on the server.

Keywords: Client-Side Rendering, Next.Js, Server-Side Generation, Server-Side Rendering.

I. INTRODUCTION

In the current digital landscape, websites play a critical role

in global communication, information distribution, and

business transactions. A website comprises static documents

created using Hypertext Markup Language (HTML), which

allows convenient sharing of information provided one is

connected to the internet [1], [2]. Several factors are

considered when determining the quality of a website,

including access speed, easy-to-read content, and a consistent

layout or design [3]. Website complexity poses challenges for

developers in terms of website performance. The greater the

amount of data or content displayed, the more significant the

impact on the browser's rendering speed and page loading

times [2]. A website designer should prioritize not only the

design layout but also the enhancement of website

performance and speed. The website's speed and

responsiveness have a significant impact on user retention and

conversion rates, and brand image [4].

To enhance web application performance, the selection of

a rendering technique is of utmost importance [5]. Next.js is a

novel framework aimed at surpassing the limitations of React

in Server-side Rendering. It is based on the React Framework,

which leverages the benefits of React while incorporating

additional features [6]. Next.js is a lightweight JavaScript

library for creating static and server-rendered applications. It

offers a minimal and flexible configuration that can be tailored

to the specific needs of the application [7]. Next.js is a full-

stack framework, serving as both a front-end tool for building

web interfaces and a back-end solution for rendering and

managing databases [8]. Next.js utilizes folder directories to

route web pages. This enables automatic routing for pages by

using page directories [7]. Moreover, Next.js boasts a plethora

of features, comprising Server-side rendering (SSR),

automatic code splitting, Static site generation (SSG), Client-

side routing (CSR), CSS and Sass support, plugins, and

integration [6], [9].

By default, Next.js pre-renders each page and generates

HTML for each page first, so that not everything is done by

JavaScript on the client side [10]. Next.js offers SSR (Server-

side Rendering) and SSG (Static Site Generation) pre-

rendering methods, which optimize performance and SEO

103

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

DOI: 10.34148/teknika.v13i1.769

[11]. Additionally, Next.js provides a CSR (Client-side

Rendering) alternative. Basically, Next.js enables the

utilization of multiple rendering methods on a single page,

simplifying the selection of an efficient and suitable method.

Determining the most suitable method (SSR, CSR, or SSG)

depends on the application's purpose, page intricacy, and

interactivity requirements. SSR is beneficial for SEO but has

an impact on server performance [12], while CSR may slow

down the initial load time but enables faster subsequent page

loads without straining the server [13]. On the other hand, SSG

is highly dependable in terms of speed, but may not be the

optimal choice for databases requiring real-time updates [14].

Based on the attributes of these rendering methods, it is crucial

to compare the efficiency of Client-side Rendering, Server-

side Rendering, and Static Site Generation when used on a

website built on the Next.js platform. The Page Loading Time

test technique is used to compare the rendering methods. Page

Loading Time refers to the duration taken to download and

present all webpage content on the browser [15]. This research

project aims to investigate the speed of loading webpages and

completing page rendering (finish) [16]. A comparative

analysis of rendering techniques in the Next.js framework will

be conducted to provide an overview of their performance.

This study will be useful for developers and researchers in

selecting the appropriate rendering technique for web

application development.

II. METHODOLOGY

The research device is a laptop running Windows 11 with

11th generation Intel(R) Core(TM) i5-1135G7 @ 2.40GHz

2.42GHz specifications, 8GB DDR4 RAM and 512GB SSD.

Node.js, Visual Studio Code, and Developer Tools on Google

Chrome, Mozilla Firefox, and Opera browsers are the software

tools used. The research subject is the “Filmku” web system

source code in the form of a TypeScript file based on the

Next.js framework. The “Filmku” web system has a web

structure as shown in the Figure 1. One of page of this web

system (My List page) is shown in the Figure 2.

Figure 1. Web Structure of the "Filmku" Website

Figure 2. My List Page on "Filmku" Web System

This study examines the performance comparison of page

load speeds, with a particular emphasis on the front end of

websites. The research procedure is shown in Figure 3 below.

Figure 3. Research Procedure

A. Server-side Rendering

Server-side rendering (SSR) is a technique for rendering

web pages on the server and sending the fully rendered HTML

to the client [17]. This technique offers various advantages

over client-side rendering (CSR), for example, faster initial

page loading times, improved SEO [11], and better

accessibility for users with slow internet connections. Figure 4

illustrates the SSR process, which starts with an HTTP request

to the server that is generated when a user enters a URL in a

browser or clicks a link to a website. When a request is made,

the server retrieves the necessary data from either the database

or third-party API, activating SSR. This demonstrates server-

side pre-rendering whereby the server compiles the JavaScript

into a static HTML file [18]. During build time, Next.js

generates HTML pages and serves pre-rendered pages from

the server to the browser, utilizing minimal JavaScript code.

Figure 4. SSR Stages from Browser Perspective (Modified

From Lazuardy and Anggraini [10])

The use of SSR on a page is done by exporting the

getServerSideProps function. The SSR implementation code

comes from the Index.jsx file script. This function will retrieve

existing data on the server. The data retrieved is adjusted to the

request from the user, this is done to display in real-time. When

104

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

DOI: 10.34148/teknika.v13i1.769

the data on the server changes, the data seen by the user will

automatically change.

B. Client-side Rendering

Client-side rendering (CSR) refers to the direct rendering

of all processes in the browser using JS. This process includes

logic, fetching, routing, and templating [18]. In Figure 5, Client

refers to the device used, such as a smartphone or computer,

which sends requests to the server and presents an interface for

interaction [8]. React.js, Angular, and Vue.js utilize client-side

rendering that runs in the browser [19]. CSR involves the

utilization of JavaScript to showcase content on the web

browser. Subsequently, during the initial load, only the

essential HTML document, which contains JavaScript files, is

received [11]. This approach replaces the need to retrieve all

content directly from the HTML document.

Figure 5. CSR Stages from Browser Perspective (modified

from Lazuardy and Anggraini [10])

The application of CSR in Next.js involves utilizing React

Hooks within the page like useEffect(). The other approach

involves employing data retrieval libraries such as SWR or

TanStack. The implementation code for CSR, which uses the

useEffect() function, originates from the Index.jsx file script.

This function serves to present and recover data in CSR. The

data retrieval occurs in the browser, and to display the latest

data, a trigger is essential.

C. Static Site Generation

Static Site Generation (SSG) is a technique that converts

web pages embedded with client-side JavaScript into static

files of HTML, CSS, and JavaScript. Essentially, SSG

comprises diverse software tools that can generate static pages

[14]. Data retrieval takes place during the build. In Figure 6,

Static HTML and JSON files are created and deployed to the

server. JSON is a format for sharing data. JSON, originating

from the JavaScript programming language is now widely

supported in other languages such as Python, Ruby, PHP, and

Java [20]. When a client initiates a request, a static page is

generated instantly without requiring any retrieval or creation

of data either on the server or client side. Nevertheless, it is

crucial to bear in mind that if there is a modification in the

backend data, it will not be reflected on the page as there is no

mechanism to trigger the generation and retrieval of data.

During the build process, the static site generator generates

HTML files and a data.json file, which is then deployed to the

server. The user makes a request, the server sends the HTML

and data.json files to the client, and the browser displays the

data sent by the server. It's important to note that any changes

made to the database will not be reflected on the web page or

server until the build and deploy process is repeated.

Figure 6. SSG Stages from Browser Perspective

The getStaticProps or getStaticPaths function retrieves

data in SSG [10]. The SSG implementation code using the

getStaticProps function is in the Index.jsx script. The function

that displays and retrieves data in SSG is getStaticProps. This

function retrieves pre-existing data during build and

deployment. If the requested data does not exist during build

and deployment, then the data will not be found.

D. Page Loading Time Test

This research uses the page loading time test method. The

selection of this test method refers to user experience quality.

Therefore, the stability factor is essential to speed up the

loading process of a website. The performance in starting a

website is one of the factors that will make users comfortable

in using the service [21].

This test was conducted on three pages and three different

browsers. The pages tested are the Authentication, Profile, and

Home pages. The browsers used are Opera version 119.0,

Chrome version 118.0.5993.90, and Mozilla Firefox version

119.0. The page loading time test was performed using 2.5

Mbps [16] internet speed and 300 ms latency on each page.

Page loading time (PLT) testing of web pages utilizes the

network features menu in the DevTools of each browser. The

process involves testing each web page and comparing the

loading time between SSR, CSR, and SSG. Table 1 displays

the measurement metrics used in this research.

Table 1. Measurement Variables [15]

No
Measurement

variables
Description

1 Request
The number of requests on the

rendered page

2 Resource
The amount of data on the rendered

page

3
DOM Content

Loaded

DOM (Document Object Model)

Ready or DOM Content Loaded is

an event that will be triggered when

it has successfully read all DOM

elements, namely from the

beginning to the end of the web

page.

4 Load
The time it takes for the page to

Load the page only

105

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

DOI: 10.34148/teknika.v13i1.769

No
Measurement

variables
Description

5 Finish

The time it takes for the page to

complete all rendering, starting

from the page, content, video, and

various other information.

The measurement variables refer to the response and data

of all transactions performed. Its objective is to simplify the

identification of traffic or bottlenecks that impact the tested

system's performance. Additionally, thus variables are utilized

to gauge the website's effectiveness and speed in interacting

with users. The variables display comprehensive data to users.

III. RESULT AND DISCUSSION

After developing and implementing each page rendering

method, the “Filmku” website underwent testing. The speed of

page load time was tested on three pages: Auth, Profile, and

Main. Each page was tested using SSR, CSR, or SSG on the

same device and with the same tools. Each page was tested

using SSR, CSR, or SSG on the same device and with the same

tools. Each page was tested using SSR, CSR, or SSG on the

same device and with the same tools. The videos utilized in the

“Filmku” web system are in MP4 format and range in size from

160 to 200 Mb.

A. Authentication Page Comparison

The Auth page is designed for user login and registration

on the Filmku website. The graph below illustrates the three

rendering methods used on this page.

(a) (b) (c)

Figure 7. Test Results for (a) "Finish CSR", (b) "Finish

SSR", (c) "Finish SSG" on the Authentication Page

Figures 8 to 10 show the results of testing the five variables

for each rendering method.

Figure 8. Request Comparison on Authentication Page

Testing

Figure 9. Resource Comparison on Authentication Page

Testing

Figure 10. Authentication Page Rendering Performance

The test results above show differences in the performance

of each rendering method. When considering the number of

requests and resources, SSR, CSR, and SSG exhibit similar

figures. However, when it comes to page load time, CSR

outperforms the others with its DOM Content Loaded time. On

the other hand, SSG has a shorter time than SSR and CSR in

terms of Load and Finish. Furthermore, during the initial

rendering of a web page, Client-Side Rendering (CSR) is

slower compared to Server-Side Rendering (SSR) and Static

Site Generation (SSG). This is because CSR retrieves and

renders all data from the website server as a whole on the client

side. According to the data, the finish time of CSR is 422 ms,

which is 57.41% slower than the finish time of SSG (180 ms)

and 34.88% slower than SSR with a finish time of 274 ms.

However, SSG is 34.60% faster than SSR.

B. Profile Page Comparison

The profile page is a page that shows the user's picture and

name for confirmation. The following is a graphical

comparison of the SSR, CSR, and SSG methods on the profile

page.

(a) (b) (c)

Figure 11. Test results for (a) "Finish CSR", (b) "Finish

SSR", (c) "Finish SSG" on the Profile page

Figures 12 to 14 show the results of testing the five

variables for each rendering method on the Profile page.

106

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

DOI: 10.34148/teknika.v13i1.769

Figure 12. Request Comparison on Profile Page Testing

Figure 13. Resource Comparison on Profile Page Testing

Figure 14. Profile Page Rendering Performance

The Profile SSG page completes the page rendering

process in a very short time of only 524 ms, which is 13.75%

faster than the CSR finish time (608 ms) and even 25.79%

faster than the SSR finish time (706 ms), based on the values

of the five variables from the three figures above. In terms of

resources, SSR has the largest amount. CSR begins to render

the second page once all website data has been retrieved and

prepared during the rendering of the first page. On the other

hand, SSR performs well with efficient resource size, despite

having a slightly slower finish time than CSR.

C. Home Page Comparison

This Home Page is the page that has the most content, and

components ranging from navbars, dashboards, trending films

now, and films in the User Playlist. The figure below shows a

graph testing SSR, CSR, and SSG methods.

(a) (b) (c)

Figure 15. Test results for (a) "Finish CSR", (b) "Finish

SSR", (c) "Finish SSG" on the Home page

Figures 16 to 18 show the results of testing the five

variables for each rendering method on the Profile page.

Figure 16. Request Comparison on Home Page Testing

Figure 17. Resource Comparison on Home Page Testing

Figure 18. Home Page Rendering Performance

Figures 16 to 18 show that the Client-Side Rendering

(CSR) test results differ significantly from those of Server-

Side Rendering (SSR) and Static Site Generation (SSG) in

terms of the number of requests, source size, and page

rendering time. It is important to note that these results are

based on objective data and not subjective evaluations.

Although CSR's finish time is 15.93% slower than SSG's finish

time (1,135 ms), it is 11.48% faster than SSR's finish time

(1,525 ms). Although Server-Side Rendering (SSR) performed

well in some aspects, it showed a slight increase in finish time

compared to CSR and SSG. SSR has lower performance in

terms of larger resource sizes and a much slower finish time,

making it the least performant among the three.

D. Discussion

Among the tests conducted on the Authentication, Profile,

and Home pages, SSG proved to be the fastest in completing

rendering at 1,839 ms and has a relatively large resource (7,159

kb). This indicates that SSG is more reliable in terms of

rendering speed. On the other hand, CSR has a longer

rendering time on the first page load, but it can be loaded

quickly and has stable resources. This is demonstrated by the

time it takes CSR to render all pages in 2,379 ms, as well as

14
14

15

10 11 12 13 14 15 16

Request

SSG CSR SSR

554
539

549

530 535 540 545 550 555 560

Resource (Kb)

SSG CSR SSR

706

175

253

608

159

248

524

101

136

0 200 400 600 800

Finish (Ms)

DOM Content Loaded (Ms)

Load (Ms)

SSG CSR SSR

29
29
29

0 5 10 15 20 25 30 35

Request

SSG CSR SSR

5840
5745

5900

5650 5700 5750 5800 5850 5900 5950

Resource (Mb)

SSG CSR SSR

1525

181

373

1350

160

289

1135

85

101

0 500 1000 1500 2000

Finish (Ms)

DOM Content Loaded (Ms)

Load (Ms)

SSG CSR SSR

107

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

DOI: 10.34148/teknika.v13i1.769

having the smallest resource (6,994 kb). Of the three rendering

methods compared, SSR is the slowest, taking 2,506 ms to

complete. In terms of resources, SSR uses 7,104 kb, which is

smaller than SSG but larger than CSR.

Page Loading Time (PLT) testing on the three pages of the

“Filmku” web system shows that there are advantages in each

rendering technique measured based on the measurement

variables. PLT testing on the Authentication page shows that

SSG is superior to CSR and SSR from all parameters. In PLT

testing on the Profile page, SSG is lighter than Request and

Resource parameters, but CSR is faster than SSR and SSG on

DOM Content Loaded, Load, and Finish parameters. Based on

PLT testing on the Homepage, SSR is the lightest of the

Request and Resource parameters, but CSR is the fastest on the

DOM Content Loaded, Load, and Finish parameters.

The initial loading of the home page using the CSR

technique is comparatively slower than other methods due to

the retrieval of all the minimal HTML and JavaScript files

from the server for client-side rendering [22]. Then, after all

the files are rendered, the next page will be faster to display.

CSR is the best method if used on the web with real-time data

usage and does not require SEO (Search Engine Optimization)

[13]. This is different from what happens with SSR. SSR has a

stable rendering time but will be burdensome from the server

side because every request from the client will be processed on

the server completely. However, by rendering it on the server,

the database displayed is always real-time. Despite various

rendering page loading tests, it is crucial to consider website

usability when using this rendering method. When real-time

data and good SEO are required, SSR is the best method.

The SSG rendering method is faster than other rendering

methods, this is because SSG does not require real-time data

retrieval, the data in SSG has been created JSON files during

build and deployment, and this data will not change before

rebuilding and deploying. So, SSG is the best method used for

website rendering if it does not require real-time data but

requires SEO [14].

IV. CONCLUSION

Based on the conducted tests, it can be concluded that the
SSG rendering method is faster than the other methods, with a
completion time of 1839 ms. This is because SSG does not
require real-time data retrieval, as data is created in JSON files
during build and deploy, and will not change until build and
deploy are performed again. The initial page load time for CSR
is slower than other methods because it requires rendering of
all HTML and JavaScript files on the client side, at least from
the server. However, subsequent page loads are faster. CSR
received a total turnaround time of 2379 ms. In contrast, SSR
has a longer rendering time of 2506 ms. Among the compared
rendering methods, server-side rendering (SSR) received the
lowest score due to its slower performance caused by the need
for each request to return to the server for processing.
However, this method guarantees real-time data, which can put
a strain on the server as each client request is processed entirely
on the server.

In addition to considering rendering speed, it is also

important to consider the usability of the website. Optimization

of performance and functionality is necessary. If real-time data

and good SEO are required, SSR is the optimal method. For

real-time database needs without SEO issues, CSR is more

suitable. However, if real-time data is not required or existing

data does not change frequently but SEO is a priority, then SSG

is the recommended method.

REFERENCE

[1] A. Suprapto and D. Sasongko, “Evaluasi Performa

Website Berdasarkan Pengujian Beban Dan Stress

Menggunakan Loadimpact (Studi Kasus Website Iain

Salatiga),” Netw. Eng. Res. Oper., vol. 6, no. 1, p. 31,

2021, doi: 10.21107/nero.v6i1.198.

[2] M. F. Santoso, “Teknik Single Page Application (SPA)

Layout Web Dengan menggunakan React Js Dan

Bootstrap,” J. Khatulistiwa Inform., vol. 9, no. 2, pp.

107–114, 2021, doi: 10.31294/jki.v9i2.11357.

[3] Suliman, “Analisis Performa Website Universitas Teuku

Umar Dan Universitas Samudera Menggunakan

Pingdom Tools Dan Gtmetrix,” J. Sist. Inf. dan Sist.

Komput., vol. 5, no. 1, pp. 24–32, 2020, doi:

10.51717/simkom.v5i1.47.

[4] A. Yusuf F, I. Nuryasin, and Z. Sari, “Optimasi

Kecepatan Loading Time Web Template Dengan

Implementasi Teknik Front-End,” J. Repos., vol. 2, no.

11, p. 1456, 2020, doi: 10.22219/repositor.v2i11.746.

[5] R. Ollila, N. Mäkitalo, and T. Mikkonen, “Modern Web

Frameworks: A Comparison of Rendering

Performance,” J. Web Eng., vol. 21, no. 3, pp. 789–813,

2022, doi: https://doi.org/10.13052/jwe1540-

9589.21311.

[6] D. Bui, “Next.Js for Front-End and Compatible Backend

Solutions,” South-Eastern Finland, University of

Applied Science, 2023.

[7] J. Johansson, “Create React App vs NextJS,” 2021.

[8] A. Hadjin, The Ultimate Next.js Ebook. JS Mastery,

2023.

[9] M. Riva, Real-World Next.js: Build scalable, high-

performance, and modern web applications using

Next.js, the React framework for production. Packt

Publishing, 2022.

[10] M. F. S. Lazuardy and D. Anggraini, “Modern Front End

Web Architectures with React.Js and Next.Js,” Int. Res.

J. Adv. Eng. Sci., vol. 7, no. 1, pp. 132–141, 2022.

[11] H. A. Jartarghar, G. R. Salanke, A. K. A.R, S. G.S, and

S. Dalali, “React Apps with Server-Side Rendering:

Next.js,” J. Telecommun. Electron. Comput. Eng., vol.

14, no. 4, pp. 25–29, 2022.

[12] V. Patel, “Analyzing the Impact of Next.JS on Site

Performance and SEO,” Int. J. Comput. Appl. Technol.

Res., no. November, 2023, doi: 10.7753/ijcatr1210.1004.

[13] T. Fadhilah Iskandar, M. Lubis, T. Fabrianti Kusumasari,

and A. Ridho Lubis, “Comparison between client-side

and server-side rendering in the web development,” IOP

108

TEKNIKA, Volume 13(1), Maret 2024, pp. 102-108

ISSN 2549-8037, EISSN 2549-8045

Hanafi, R., et.al.: Comparison of Web Page Rendering Methods Based on Next.js

Framework Using Page Loading Time Test

DOI: 10.34148/teknika.v13i1.769

Conf. Ser. Mater. Sci. Eng., vol. 801, no. 1, 2020, doi:

10.1088/1757-899X/801/1/012136.

[14] A. A. Yusuf, “Analisis Static Site Generator Pada Web

portal Berita,” Ind. High. Educ., vol. 3, no. 1, pp. 1–68,

2021.

[15] E. Budiman, N. Puspitasari, S. N. Alam, T. M. A. Akbar,

Haeruddin, and D. Indra, “Performance analysis of the

resource loading time for borneo biodiversity

information system,” in Proceedings of the 3rd

International Conference on Informatics and

Computing, ICIC 2018, 2018, pp. 1–5, doi:

10.1109/IAC.2018.8780515.

[16] R. Oktrifianto, D. Adhipta, and W. Najib, “Page Load

Time Speed Increase on Disease Outbreak Investigation

Information System Website,” IJITEE (International J.

Inf. Technol. Electr. Eng., vol. 2, no. 4, p. 114, 2019, doi:

10.22146/ijitee.46599.

[17] A. Meredova, “Comparison of Server-Side Rendering

Capabilities of React and Vue,” Haaga-Helia University

of Applied Sciences, 2023.

[18] O. Lyxell, “Server-Side Rendering in React : When Does

It Become Beneficial to Your Web Program ?,” 2023.

[19] R. N. V. Diniz-Junior et al., “Evaluating the performance

of web rendering technologies based on JavaScript:

Angular, React, and Vue,” in 2022 XVLIII Latin

American Computer Conference (CLEI), 2022, pp. 1–9,

doi: https://doi.org/10.1109/CLEI56649.2022.9959901.

[20] H. Kurniawan and Eka Puji Widianto, “Analisis

Peningkatan Performa Akses website Dengan Web

Server Stress Tools,” Jatisi, vol. 2, no. 2, pp. 108–119,

2019.

[21] I. M. E. Listartha, “Pengujian Performa dan Tingkat

Stress pada Website Legalisir Ijasah Online Universitas

Pendidikan Ganesha,” Electro Luceat, vol. 6, no. 1, pp.

66–73, 2020, doi: 10.32531/jelekn.v6i1.182.

[22] M. C. Weigle, M. L. Nelson, S. Alam, and M. Graham,

“Right HTML, Wrong JSON: Challenges in Replaying

Archived Webpages Built with Client-Side Rendering,”

2023, doi: 10.1109/JCDL57899.2023.00022.

