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Abstract 

 

Presently, e-commerce platforms incorporate image search functionalities. Nevertheless, these systems possess constraints; input 

images necessitate static and manual cropping since the system does not automatically generate bounding boxes. Addressing 

this concern requires the implementation of an object detection algorithm to ascertain the quantity, location, and type of desired 

objects within real-time bounding boxes before users finalize their selection. This capability empowers users to readily discern 

their desired items, thereby augmenting the precision and efficiency of visual searches. Despite the availability of swifter object 

detection algorithms such as R-CNN and Mask R-CNN, which prioritize accuracy over speed, rendering them less suited for 

real-time detection, we opted to employ the YOLOv4 algorithm as an alternative, renowned for its efficacy in real-time object 

detection. Furthermore, we adopted the Color, Texture, and Edge-Based Image Retrieval (CTEBIR) technique for image 

matching. The results of our experimentation demonstrate that the utilization of the YOLOv4 algorithm can enhance the accuracy 

and speed of visual searches by streamlining the search process based on the identified classes. Additionally, our precision 

assessment yielded a score of 95%, with individual scores for camera objects reaching 90%, keyboards achieving 85%, and 

laptops attaining 71%. These findings corroborate the dependability of the CTEBIR algorithm in image matching and contribute 

to a deeper comprehension of the system's efficacy in accurately detecting and distinguishing objects. 

 

Keywords: CTEBIR, Detection, E-commerce, Real-time, YOLOv4. 

 

 

 

 
I. INTRODUCTION 

E-commerce is a platform for buying and selling goods and 

services, as well as transferring funds or data over the internet, 

which is currently booming in the modern business world [1]. 

As a support system, e-commerce is equipped with search 

systems, whether text-based, audio-based, or image-based [2]. 

Image search has also become a common and important tool 

for studying many important topics ranging from spatial 

vision, attention, and oculomotor control to memory, decision-

making, and rewards [3]. However, the visual search available 

in e-commerce platforms still has several weaknesses: users 

have to input a static image [2], and manual cropping of the 

object/item to be searched is required because bounding boxes 

are not automatically provided by the system [4]. Bounding 

boxes in image detection systems are useful for increasing 

detection speed and limiting the area of image checking for 

comparison with data in the system, thus improving matching 

accuracy with system data. Moreover, in image-based 

searches, an image can consist of multiple objects, so an object 

detection algorithm is needed to determine the quantity, 

location, and type (classification) of desired objects in the form 

of bounding boxes in real-time before users make a selection. 

In addition to helping users ensure the type of object they want 

to search for, the results of object detection can also enhance 

search accuracy and efficiency [5].  

In detecting an image, various extraction methods such as 

color, texture, and edges can be employed. Color filtering is a 

specific image processing technique based on a particular 

color. The working principle of color filtering involves 

comparing the color components of each pixel in the image 

with a specific color [6]. However, relying solely on color 

features may not be sufficient for object detection due to the 

significant influence of lighting conditions and the presence of 

numerous items during real-time image search. Therefore, it is 

necessary to consider using other features for extraction, such 

as texture and edges. YOLOv4 is one of the object detection 

algorithms known for its excellent performance in terms of 

both accuracy and detection time [7]. YOLOv4 also boasts a 

simple architecture, trained to perform classification and 

bounding box regression simultaneously, making it fast and 

suitable for real-time detection [8]. Additionally, YOLOv4 is 

a cleaner object detection method due to its end-to-end training 

process [9].  
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As a solution, a real-time image search system will be 

developed, implementing the YOLOv4 object detection 

algorithm along with the Color, Texture, and Edge-Based 

Image Retrieval (CTEBIR) technique in a web-based e-

commerce application. The proposed method will start by 

inputting a set of images in real-time, which will be processed 

by the YOLOv4 algorithm to predict a number of bounding 

boxes and only display boxes with confidence scores above 

0.25. This step serves as an initial stage for detection before 

applying various proposed features. The YOLOv4 algorithm 

will also classify the type of object based on conditional class 

probabilities to narrow down the database's data coverage for 

comparison with the input image during the image retrieval 

stage [10], [11]. Next, users will be asked to select one object 

(bounding box), which will then be cropped by the system, 

proceeding to the image retrieval stage using the CTEBIR 

technique. In the initial stage, each image in the database is 

selected based on color similarity and taken to form a database 

subset. Then, the Local Binary Pattern (LBP) and Canny Edge 

Detection methods are used to extract texture and edge features 

from the query image and images in the subset from the first 

stage. Subsequently, the Manhattan distance information 

between two corresponding features of the query image and 

the selected image is computed and combined, then sorted 

using the bubble sort algorithm [12]. Finally, users receive a 

catalog sorted from products with the highest to lowest 

similarity values in their images [13]. The image with the 

highest similarity value will be the final result of the detection 

process.  

The expected outcome of this research is to accurately 

detect images in real-time, thereby enhancing user comfort in 

utilizing image search features, expanding insights into object 

detection, and serving as a reference for other researchers in 

the field of object detection using CTEBIR features. 

 

 

II. RESEARCH METHODOLOGY 

A.  Research Stages 

Visual search is an intricate process encompassing vision, 

comprehension, memory, decision-making, and reward, 

fundamentally altering the dynamics of how individuals 

engage with surrounding products. The object of interest 

sought by an observer is termed the "target," whereas other 

items are designated as "distractors." Contemporary visual 

search technology leverages Artificial Intelligence (AI) to 

comprehend the content and context of images, presenting a 

curated list of pertinent results [1]. 

Rather than requiring humans to adopt a computational 

mindset, as in text-based searches, visual search analyzes 

images utilizing visual cues and image metadata. Facilitated by 

AI, visual search delivers the most pertinent results by 

identifying similarities, such as specific colors or styles. 

Undoubtedly, this facilitates a smoother retail experience, 

enabling customers to swiftly locate desired items [2].  
 

B.  Images 

An image comprises distinct points that collectively form a 

cohesive entity imbued with meaning, encompassing both 

"artistic" and "intrinsic" aspects. A high-quality image not only 

showcases the aesthetic appeal of the composition (artistic) but 

also ensures clarity for analysis and various applications 

(intrinsic). Pixels, the smallest units composing an image, 

govern its resolution and contribute significantly to its overall 

quality and visual fidelity. represent the units of an image. 

Pixel is short for picture The "element" refers to the graphic 

representation of the smallest unit in a graphical image, 

measured per inch. Each pixel not only represents a single 

point in an image but also constitutes a component within a 

box, commonly known as a cell, which is the smallest unit of 

the image [1]. 

There are two main types of images: analog images and 

digital images. An analog image is continuous, such as a 

photograph captured with an analog camera or the display on 

a TV or monitor (video signal). In contrast, a digital image is 

stored on a storage medium and can be manipulated by a 

computer. Images can further be classified into two categories: 

still images and moving images. Still images are presented 

sequentially, creating the illusion of motion to the viewer. Each 

image in the sequence is referred to as a frame. Widescreen 

films or television shows typically comprise hundreds to 

thousands of frames [14]. 

 

C.  Algorithm You Only Look Once (YOLO) 

The YOLO (You Only Look Once) system is a real-time 

object detection system that can identify multiple objects 

simultaneously within a single frame. YOLO outperforms 

other object detection systems in terms of accuracy and speed. 

It can predict up to 9,000 classes, including classes that may 

not be visible. YOLO's primary objective is to locate specific 

objects within an image and classify them. In essence, it takes 

an image as input and produces a vector containing bounding 

boxes and class predictions. 

The YOLO algorithm is a real-time object detection 

algorithm that prioritizes speed and recognition over spending 

excessive time on creating region proposals, thereby aiming 

for efficient object detection rather than achieving perfect 

detection of all objects [15]. The primary objective of 

researching this algorithm is to develop an object detector 

optimized for rapid operation in production systems and 

parallel computation, rather than focusing solely on low 

computational volume theoretical indicators (BFLOP). The 

YOLO algorithm is user-friendly and straightforward to train, 

enabling even conventional GPU users to achieve real-time, 

high-quality, and convincing object detection results  [10]. The 

detection system operates by utilizing a repurposed classifier 

or localizer for detection purposes. The model is applied to an 

image across various locations and scales. Areas containing the 

highest scored images are identified as detections [10]. 

 

D.  Research Methodology 

 The flowchart of the overall real-time visual search system 

analysis process in e-commerce can be seen in Figure 1. 



147 
 

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154  

ISSN 2549-8037, EISSN 2549-8045 

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time 

DOI: 10.34148/teknika.v13i1.773 

 
Figure 1. The Flowchart of The Entire Process of the Image 

Search System. 

 

E.  Input Object 

The input objects consist of a series of images captured by 

the user's camera while scanning for the desired object in real-

time. 

 

F.  Object Detection 

Object detection is performed using the YOLO algorithm, 

which consists of 2 main processes: training and validation. 

The input for this process includes a set of images from stage 

1 and a dataset. The output of this process includes bounding 

boxes and classifications of the recognized object classes by 

the YOLO model. The object detection process consists of: 

 

1.   Prepare the dataset 

The dataset of electronic items is obtained from the 

OpenImagev6 dataset and downloaded using the OIDv6 

application. The dataset consists of 16,760 images, with 

15,512 images for training and 1,248 images for validation. It 

is divided into 6 different categories of electronic items: 

camera, printer, laptop, tablet, keyboard, and mouse, with 

specifications as shown in the following Table 1: 

 

Table 1. Dataset Information 

Category Training Validation 

Camera 5037 484 

Keyboard 3331 287 

Mouse 622 100 

Tablet 784 54 

Printer 210 74 

Laptop 5528 249 

 

2.   Preprocessing Image Data 

Next, annotation preprocessing is performed from the 

OIDv6 format to the YOLO format as shown in Figure 2 and 

Figure 3. 

 

 
Figure 2. The OIDv6 Annotation Format (Before Conversion) 

 

 
Figure 3. The YOLO Annotation Format (After Coversion) 

 

3.   Configuration of the YOLO Network 

The network configuration is required as the model 

network to load the data for training. The number of images 

in one batch is 64, meaning that each iteration loads 64 

images. Then, the batch is divided into several blocks that can 

run in parallel on the GPU. The number of subdivisions or 

batch blocks is set to 64 so that the modeling process divides 

the batch into 64 parts. Additionally, changes in learning rate 

are made after batch 10,000 and 11,250. The maximum batch 

processed in one iteration is 12,500. The input size is 

576x576. The class value in the [yolo] layer is set to 6 

according to the number of classes to be trained, and the filter 

value in each layer before the yolo layer is 33. All these 

parameter values are calculated based on the Darknet 

documentation. 

 

4. Darknet Configuration 

Darknet configuration is necessary to ensure the data 

training process runs smoothly. This configuration process 

begins by creating two files named obj.names and obj.data, 

which are stored in the data directory. The obj.names file 

contains the names/classes of the detected objects. Each class 

is separated by a new line. 

Then, the obj.data file contains the configuration for 

training YOLO, including the number of classes, the location 

of the list of image files for training and validation in .txt file 

format, the names of object classes, and the backup directory 

used to store temporary training weight results. Temporary 

training weight results are usually saved if the model after 

validation and mAP value on that model is better than the 

previous validation. The contents of the configuration in the 

obj.data file can be seen in Figure 4 below. 

 

 
Figure 4. The Content of the Obj Data File 

 

After creating the configuration files, the next step is to 

configure Darknet to run training with GPU. Once the 

building process is complete, the next step is to download the 
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pre-trained weights file for YOLOv4 and place it in the root 

directory of Darknet. 

 

5.   Training the YOLO Model 

The YOLO Model Training is conducted by executing the 

command/darknet detector train data/obj.data cfg/YOLOv4-

obj.cfg YOLOv4.conv.137 -map -dont_show where 

data/obj.data is the location of the Darknet configuration file, 

cfg/YOLOv4-obj.cfg is the configuration file of the YOLOv4 

model, and YOLOv4.conv.137 is the pre-trained weight file 

for YOLOv4. -map is the argument to validate the mAP value 

every 4 epochs. 

 

G.  Query Image 

 The query image is an image within a bounding box chosen 

by the user among the objects recognized by the YOLOv4 

model and automatically cropped by the system. The class 

resulting from object classification is also used to narrow down 

the search space. 

 

H.  CBIR / CTEBIR (Color, Texture, and Edge Based 

Image Retrieval) 

 CTEBIR is one of the methods in CBIR (Content-Based 

Image Retrieval). The algorithm works by initially selecting 

suitable images from a large database based on color moment 

information, which is then stored in a new database (subset). 

Next, the Local Binary Pattern (LBP) and Canny edge 

detection methods are used to extract texture and edge features 

from the query image and the images in the subset obtained 

from the first stage. Then, the Manhattan distance information 

between the corresponding features of the query image and the 

selected image is calculated and combined, and then sorted 

using the bubble sort algorithm. The workflow of the image 

processing process in performing detection can be seen in 

Figure 5 below. 

 

 
Figure 5. Block Diagram of Color, Texture, and Edge-based 

CBIR [7]. 

 

1.   Color Descriptor 

In this algorithm, to minimize complexity and enhance the 

effectiveness of CBIR, a global color descriptor is used at the 

first retrieval level. Color moments (statistical measures) are 

selected to represent the color details of the image. This 

provides information on the distribution of pixel colors in two 

forms of moments. The first-order moments provide average 

information about the pixel distribution of a specific image 

(Mean), and the closeness of the pixel distribution to the 

average color is estimated by the second-order moments 

(Standard Deviation). In the first stage of the retrieval process, 

the average color information (mean) and the quantity of 

different pixel values from the mean (standard deviation) of 

the query image are globally estimated from the three color 

channels (Red, Green, Blue) of the RGB color space using 

Equations (1) and (2). If the pixels in the image are close to 

the mean value, the standard deviation will be low. High 

standard deviation indicates that a large number of pixel 

colors do not approach the mean value. 

 

𝑀𝑒𝑎𝑛(𝐼𝑐) =  
1

𝑀 𝑥 𝑁
 ∑ ∑ 𝑃𝑐𝑖𝑗𝑁

𝑗=1
𝑀
𝑖=1 , 𝑐 = {𝑅, 𝐺, 𝐵}        (1) 

𝑆𝑡𝑑(𝐼𝑐) = (
1

𝑀 𝑥 𝑁
 ∑ ∑ (𝑃𝑐𝑖𝑗 − 𝑀𝑒𝑎𝑛(𝐼𝑐)2𝑁

𝑗=1
𝑀
𝑖=1 )

1

2
 , 𝑐 =

{𝑅, 𝐺, 𝐵}             (2) 

 

Where, Ic = color channel information of an image, M = 

size of rows, N = size of columns of an image, Pcij = pixel 

value of an image at row i and column j in a specific color 

channel. 

Only the Mean (Ic) value is required to select images from 

the database to generate a smaller search space. It cannot be 

ensured that the Mean value is one of the accurate pixel 

information from a given specific image. The image standard 

deviation is important to provide details about the distribution 

of image pixels around the mean information. This 

information acts as lower and upper bounds for the mean 

value and allows taking values between them. Therefore, the 

details of the standard deviation are added and subtracted 

from the Mean value. The result of this operation provides two 

threshold values for each channel, namely: Low Threshold 

(LT) as in Equation (3) and High Threshold (HT) as in 

Equation (4) given as follows: 

 

𝐿𝑇(𝐼𝑐) =  𝑀𝑒𝑎𝑛(𝐼𝑐) − 𝑆𝑡𝑑(𝐼𝑐), 𝑐 = {𝑅, 𝐺, 𝐵}         (3) 

𝐻𝑇(𝐼𝑐) =  𝑀𝑒𝑎𝑛(𝐼𝑐) + 𝑆𝑡𝑑(𝐼𝑐), 𝑐 = {𝑅, 𝐺, 𝐵}         (4) 

 

If the Mean (Ic) of an image from the database lies 

between the two threshold values (LT and HT), then that 

image is selected for the subsequent feature extraction 

process. The threshold values for the R, G, and B color 

channels are combined using the logical AND operator (&&). 

Here, the first stage of the proposed work behaves as a filter 

that takes all images from the database and passes the images 

that meet the specified criteria at this level. At the end of this 

first stage, the collectively selected images form a subset of 

the original database. The subsequent stages use this subset of 

images rather than the original database for image retrieval. 

 

2.   Texture Descriptor 

Texture is another prominent descriptor in CBIR systems. 

This extraction algorithm is performed on the selected subset 

of images from the first stage of the retrieval process. Before 

exploring LBP on the selected images, an RGB to grayscale 

transformation is performed as a preprocessing step on those 

images. For each iteration, a 3 × 3 overlapping grayscale 

image is required as input. The pixel values available at the 
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Center Position (CP) of the 3 × 3 sub-block act as the 

threshold values for its neighboring pixels. Using these 

threshold values, a binary representation of the sub-block is 

created. Then, the LBP value of the 3x3 sub-block is evaluated 

in a clockwise direction. Finally, the LBP value is updated at 

the center pixel position of the block in the image. The first 

iteration of LBP is illustrated in Figure 6 (a) and Equation (5) 

to show the LBP estimation on the 3 × 3 block representation. 

 

𝐿𝐵𝑃𝑁(𝐼𝑐) =  ∑ 𝑓 (𝑃𝑖 − 𝐶𝑃)2𝑖𝑁−1
𝑖=0 ; 𝑓(𝑝) = {

1; 𝑃 ≥ 0
0; 𝑃 < 0

     (5) 

 

Where N = total neighboring pixels for CP in the 3 × 3 sub-

block. 

 

In Figure 6 (b), the first 3 × 3 sub-block is taken from a 

simple grayscale image sized 5 × 5. In this case, the pixel 

value 21 at the center is the threshold value for its 8 neighbors. 

The difference between the value of each neighboring pixel 

and the value of the center pixel is calculated. If the difference 

value is greater than or equal to 0, then the pixel value is 

changed to 1; otherwise, it is updated to 0 instead. Next, this 

8-bit binary value is converted to a decimal value and 

rehabilitated in place of the center pixel, as shown in Figure 6 

(c). After obtaining the LBP for the entire image, the 

histogram of LBP values is calculated, which provides a 

representation of the texture features of an image. 

 

 
Figure 6. First Iteration of LBP: (a) Position of Pixels in the 

3 × 3 Block Image (b) Generation of Binary Values Using 

Threshold Values (c) Generation of LBP Values Through the 

Obtained Binary Values [8]. 

 

3.   Edge Descriptor 

Usually, edges are formed by sudden changes in the 

intensity values of the image captured by the edge detection 

algorithm and hold the representation of the boundaries of 

objects present in the image. Canny edge detection is used to 

represent the shape of objects in the selected image at the end 

of the first stage. Initially, color edge features are separated 

into R, G, and B channels. The Canny Edge Detection 

algorithm consists of 5 steps [16], including: 

 

a. Noise Reduction. 

Since the mathematics involved behind the scenes are 

mostly based on derivatives, edge detection results are highly 

sensitive to image noise. One way to remove noise from the 

image is by applying Gaussian blur to smoothen it. To do this, 

image convolution technique is applied with a Gaussian 

Kernel (3x3, 5x5, 7x7, etc.). The kernel size depends on the 

blurring effect desired. Essentially, the smaller the kernel, the 

less noticeable the blur. The equation for the Gaussian filter 

kernel size (2k + 1) × (2k + 1) can be seen in Equation (6). 

 

𝐻𝑖𝑗 =  
1

2𝜋𝜎2 exp (
(𝑖− (𝑘+1))

2
+ (𝑗− (𝑘+1))

2

2𝜎2 ) ; 1 ≤ 𝑖, 𝑗 ≤  (2𝑘 +

1)              (6) 

 

To begin, a two-dimensional Gaussian function is required 

as in Equation (7). 

 

𝐺 (𝑥, 𝑦) =  
1

2𝜋𝜎2

− 
𝑥2+ 𝑦2

2𝜎2
                                                       (7) 

 

The values of this function will create a convolution 

matrix/kernel that we will apply to each pixel in the original 

image. The kernel is usually quite small - the larger it is, the 

more computations we have to perform on each pixel. Here, x 

and y determine the delta from the central pixel (0, 0). For 

example, if the chosen kernel radius is 3, x and y will range 

from -3 to 3 (inclusive). The standard deviation - affects how 

significantly neighboring pixels influence the computation 

result of the central pixel. 

 

b. Gradient Calculation. 

The gradient calculation process detects the intensity and 

direction of edges by computing the image gradient using 

edge detection operators. These edges correspond to changes 

in pixel intensity. To detect them, the simplest way is to apply 

filters that highlight these intensity changes in both directions: 

horizontal (x) and vertical (y). 

When the image is smoothed, the derivatives Ix and Iy 

with respect to x and y are computed. This can be 

implemented by convolving I with Sobel kernels Kx and Ky, 

respectively (Figure 7). 

 

 
Figure 7. Sobel Filter for Both Directions (Horizontal and 

Vertical) 

 

The formula yields the magnitude matrix Equation (8): 

 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (𝐼) =  √𝑥 (𝐼)2 + 𝑦(𝐼)2         (8) 

 

The formula yields the angle matrix Equation (9): 

 

𝑎𝑛𝑔𝑙𝑒(𝐼) = 𝑎𝑡𝑎𝑛2(𝑦(𝐼), 𝑥(𝐼))[∙ 180/𝜋]         (9) 
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The result is almost as expected, but it can still be observed 

that some edges are thick while others are thin. The next step, 

Non-Maximum Suppression, will help reduce the thick lines. 

Additionally, the intensity levels of the gradient between 0 

and 255 are not uniform. The edges in the final result should 

have the same intensity (e.g., white pixels = 255). 

 

c. Non-Maximum Supression. 

Ideally, the final image should have thin edges. Therefore, 

Non-Maximum Suppression (NMS) should be performed to 

thin out the edges. The principle used is to traverse all points 

in the gradient intensity matrix and find pixels with maximum 

values in the edge direction. The illustration of the traversal 

direction can be seen in Figure 8 below. 

 

 
Figure 8. The Traversal Direction in NMS Corresponds 

to the Rotation of Angles. 

 

The top left corner of the red box in the above image 

represents the intensity pixels from the Gradient Intensity 

matrix being processed. The corresponding edge direction is 

represented by the orange arrow with an angle of -π radians 

(+/- 180 degrees) as shown in Figure 9. 

 

 
Figure 9. Checking Pixels in the -π Radian Direction 

 

Edge directions are represented by the dashed orange lines 

(horizontal from left to right). The goal of this algorithm is to 

check whether pixels in the same direction are more or less 

intense than the one being processed. In the example above, 

pixel (i, j) is being processed, and pixels in the same direction 

are highlighted in blue (i, j-1) and (i, j+1). If either of these 

two pixels is more intense than the one being processed, only 

the more intense pixel is retained. Pixel (i, j-1) appears to be 

more intense because it is white (value 255). Therefore, the 

intensity value of the current pixel (i, j) is set to 0. If there are 

no pixels in the edge direction that have a stronger value, then 

the intensity of the current pixel is retained. 

In this case, the direction is the diagonal line represented 

by the dashed orange dots. Therefore, the strongest pixel in 

this direction is pixel (i-1, j+1). So, each pixel has 2 main 

criteria (edge direction in radians, and pixel intensity 

(between 0–255)). Based on this input, the steps of non-

maximum suppression are: 

1. Create a matrix initialized to 0 with the same size as the 

original gradient intensity matrix; 

2. Identify the edge direction based on the angle values from 

the angle matrix; 

3. Check whether pixels in the same direction have higher 

intensity than the pixel being processed; 

4. Return the processed image using the NMS algorithm. 

 

d. Double Treshold 

This step aims to identify 3 types of pixels: 

1. Strong pixels are pixels with very high intensity values 

that are believed to contribute to the final edge. 

2. Weak pixels are pixels with intensity values that are not 

strong enough to be considered strong, but not small 

enough to be considered irrelevant for edge detection. 

3. Other pixels are considered irrelevant for edges. 

 

e. Edge Tracking by Hysteresis. 

Based on the thresholding results, hysteresis turns weak 

pixels into strong ones if and only if at least one pixel around 

the pixel being processed is a strong pixel. 

 

4.   Similarity Measure 

The similarity measure is essential in all types of retrieval 

systems because it provides a measure of the distance between 

the low-level visual content of two images. The distance 

information is a determinant factor of the similarity measure. 

A very low resultant value indicates that the matching 

database image is very close to the given query image. LBP 

and edge feature similarity are estimated through the 

Manhattan distance measurement given by Equations (10) and 

(11). 

 

𝐿𝐵𝑃𝑆𝑀(𝑄𝐿𝐵𝑃𝐼𝑀𝐴𝐺𝐸,𝑁𝑒𝑤𝐷𝐵𝐿𝐵𝑃𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆) =

 ∑ |𝑓𝑄𝐿𝐵𝑃𝐼𝑀𝐴𝐺𝐸
 (𝑖) − 𝑓𝑁𝑒𝑤𝐷𝐵𝐿𝐵𝑃 𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆

 (𝑖)|𝑁
𝑖=1           (10) 

 

Where fQLBPIMAGE (i) is the ith LBP feature of the query image, 

fNewDBLBPCOUNT IMAGE (i) is the ith LBP feature of an image in 

the new database, and N is the total number of LBP features 

in the image. 

 

𝐸𝐷𝐺𝐸𝑆𝑀(𝑄𝐸𝐷𝐺𝐸𝐼𝑀𝐴𝐺𝐸,𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆) =

 ∑ |𝑓𝑄𝐸𝐷𝐺𝐸𝑅 𝐼𝑀𝐴𝐺𝐸
 (𝑖) − 𝑓𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝑅𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆

 (𝑖)|𝑁
𝑖=1  

+ ∑ |𝑓𝑄𝐸𝐷𝐺𝐸𝐺 𝐼𝑀𝐴𝐺𝐸
 (𝑖) −𝑁

𝑖=1

𝑓𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝑅 𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆
 (𝑖)| +  ∑ |𝑓𝑄𝐸𝐷𝐺𝐸𝐵 𝐼𝑀𝐴𝐺𝐸

 (𝑖) −𝑁
𝑖=1

𝑓𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝑅 𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆
 (𝑖)|          (11) 

 

Where fQEDGE_RIMAGE(i), fQEDGE_GIMAGE (i) dan fQEDGE_BIMAGE (i) 

represent the ith edge feature of the query image in the R, G, 
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and B color channels, respectively. Similarly, 

fNewDBEDGE_RCOUNTIMAGES(i), fNewDBEDGE_GCOUNT IMAGE(i) and 

fNewDBEDGE_BCOUNT IMAGE provide the ith edge feature of a new 

database image in the R, G, and B color channels, 

respectively. NR, NG, and NB correspondingly denote the 

number of edge features in the R, G, and B color channels of 

an image. 

LBP and edge feature distance values obtained randomly 

vary from each other in an unbounded manner. Therefore, 

normalization is important to confine large and small 

variations in feature values to the range [0, 1]. Min-Max 

normalization is implemented through Equations (12) and 

(13) on the texture and edge feature distance measurements. 

 

𝑁𝑂𝑅𝑀𝐴𝐿_𝐿𝐵𝑃_𝑆𝑀(𝑖) =  
𝐿𝐵𝑃_𝑆𝑀(𝑖)−min (𝐿𝐵𝑃_𝑆𝑀)

max (𝐿𝐵𝑃_𝑆𝑀) −min (𝐿𝐵𝑃_𝑆𝑀) 
 , 𝑖 =

 1, 2, … , 𝐾           (12) 

 

𝑁𝑂𝑅𝑀𝐴𝐿_𝐸𝐷𝐺𝐸_𝑆𝑀(𝑖) =

 
𝐸𝐷𝐺𝐸_𝑆𝑀(𝑖)−min (𝐸𝐷𝐺𝐸_𝑆𝑀)

max (𝐸𝐷𝐺𝐸_𝑆𝑀) −min (𝐸𝐷𝐺𝐸_𝑆𝑀)
 , 𝑖 = 1, 2, … , 𝐾                     (13) 

 

Where K is the total number of images in the new dynamic 

database (which will change according to the selection rule in 

the first stage); LBP_SM(i) represents the similarity measure 

value based on LBP of the i-th image in the new database; 

min(LBP_SM) and max(LBP_SM) indicate the minimum and 

maximum texture feature similarity values for the entire set of 

images in the new database. 

 

I.   Displaying the product catalog search results. 

The results from CTEBIR are presented as a product 

catalog for the user, complete with product names, prices, and 

product details. These products can then be ordered and 

purchased by the user. 

 

J.   Displaying the product catalog search results. 

The visual search results will be evaluated using precision 

and recall calculations using Equations (14) and (15). High 

precision and recall scores indicate that the search results have 

a high level of accuracy and relevance. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑅𝑒𝑡𝑟𝑖𝑣𝑒𝑑

𝐴𝑙𝑙 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡
         (14) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑅𝑒𝑡𝑖𝑒𝑣𝑒𝑑

𝐴𝑙𝑙 𝑅𝑒𝑡𝑟𝑖𝑣𝑒𝑑
         (15) 

 

Where: 

True Positives (TP) are the correctly retrieved relevant items. 

False Positives (FP) are the irrelevant items retrieved as 

relevant. 

False Negatives (FN) are the relevant items not retrieved 

 

 

III. RESULT AND DISCUSSION 

The algorithm testing is conducted on two algorithms: the 

YOLO object detection algorithm and the CTEBIR algorithm 

for image search. The specifications of the devices used for 

algorithm testing can be seen in Table 2. 

Table 2. Specifications of the Algorithm Testing Device 

No 
Specifi 

cation 
Server 1 Server 2 Client 

1 CPU Intel(R) 

Core(TM) i5-

2400 

3.10GHz 

Intel® 

Celeron® 

B830 - 

1.8GHz (2 

Cores) 

Intel(R) 

Core(TM

) i5-

9300H 

CPU @ 

2.40GHz 

2 GPU Nvidia GTX 

460 with 

Max-Q 

Design ( 4 GB 

DDR 6 

VRAM ) 

Intel HD 

Graphics 

Nvidia 

GTX 

1650 

with 

Max-Q 

Design ( 

4 GB 

DDR 6 

VRAM ) 

3 RAM 8GB DDR3 8GB DDR3 

1333 

8 GB 

DDR 4 

4 Storage HDD 500GB 250GB 

(SSD - OS) 

320GB 

(HDD) 

256 GB 

2666 

MHz 

5 Opera 

tion 

Systems 

MX Linux 

XFCE 19.4 

x64 

Manjaro 

KDE 

21.0.7 

Windows 

10 Home 

64 Bit 

Version 

20H2 
6 Browser Google 

Chrome 

v91.0.4472.12

4 

Microsoft 

Edge Beta 

93.0.961.11

-1 

Google 

Chrome 

v91.0.447

2.124 
 

A. Yolo Algorithm Testing 

Manual and automatic testing of the YOLO algorithm are 

conducted by calculating the mAP from the detection output 

to assess its accuracy. The testing data consists of 60 testing 

samples from Kaggle for manual testing and 1,248 data 

samples from OpenImagev6 for automatic testing. An 

example of detection using YOLO can be seen in Figure 10 

below. 

 

 
Figure 10. Detection Results of YOLOv4 

The precision values from the manual testing detection 

results can be seen in Table 3. 
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Table 3. Table of Precision Values from Manual Testing 

Results using YOLOv4 

No 
Precision 

Camera Keyboard Laptop 

1 Camera: 46% 

Camera: 38% 

Undetected Laptop: 85% 

2 Camera: 78% Keyboard:86% Laptop: 46% 

3 Camera: 99% Keyboard: 51% Laptop: 65% 

4 Camera: 94% Keyboard: 32% Laptop: 94% 

5 Camera: 91% Keyboard: 86% Laptop: 88% 

6 Camera: 95% 

Camera: 27% 

Keyboard: 67% Laptop: 67% 

7 Camera: 93% 

Camera: 85% 

Camera: 28% 

Keyboard: 55% Laptop: 55% 

8 Undetected Keyboard: 67% Laptop: 67% 

9 Camera: 89% Keyboard: 45% Laptop: 45% 

10 Camera: 71% Keyboard: 33% Laptop: 33% 

Nos 
Precision 

Mouse Printer Tablet 

1 Mouse: 54% Printer: 54% Tablet: 71% 

2 Mouse: 90% Printer: 27% Tablet: 21% 

3 Mouse: 71% Printer: 28% False Detection 

4 Mouse: 97% False Detection False Detection 

5 Mouse: 76% Printer: 37% Tablet: 47% 

6 Mouse: 73% Printer: 51% Tablet: 85% 

7 Mouse: 61% Printer: 53% Tablet: 65% 

8 Mouse: 93% Printer: 68% False Detection 

9 Mouse: 44% Printer: 35% Tablet: 60% 

10 Mouse: 98% Printer: 71% Tablet: 26% 

    

The testing results presented only include correct 

detections according to their categories. For detections that 

are incorrect or missed, a precision value of 0% is assigned. 

Out of 60 trials, 5 objects were incorrectly detected, and 2 

inputs were missed by YOLOv4. Subsequently, the mAP is 

calculated by averaging the precision results from each 

category to obtain 6 APs (Average Precisions). These six APs 

are then averaged to yield the mAP. Based on the mAP 

calculation results in Table 4, it can be observed that the mAP 

value is 58.3375%. The process of calculating mAP can be 

seen in Table 4. 

 

Table 4.Calculation Process of mAP for YOLOv4 Based on 

Table 3 

No 

Precision (%) 

Came

ra 

Key 

boar

d 

Lapto

p 

Mo

use 
Printer 

Tab 

let 

1 42 0 85 54 54 71 

2 78 86 46 90 27 27 

3 99 51 65 71 28 0 

4 94 32 94 97 0 0 

5 91 86 88 76 37 47 

6 95 67 84 73 51 85 

7 58.25 55 0 61 53 65 

8 0 67 84 93 68 0 

9 89 45 67 44 35 60 

10 71 33 86 98 71 26 

AP 

(%) 

71.72

5 

52.2 69.9 75.7 42.4 38.1 

mAP (%) = 58.3375 

 

Automatic testing on the YOLOv4 model yielded an mAP 

of 78.64% with a total detection time of 39 seconds, as shown 

in Figure 11 below. There is a difference of 20.31% between 

manual and automatic testing. 

 

 
Figure 11. Results of YOLOv4 Testing on Validation Data 

 

B. Testing the CTEBIR Algorithm 

The CTEBIR algorithm is tested by calculating the Recall 

and Precision values for each category. The testing dataset 

consists of 60 data points.  

 

 
Figure 12. Search Image: Before Cropping (Left) and After 

Cropping (Right) 

 

The input data for this algorithm is obtained from the 

cropped images based on the bounding boxes detected by the 

YOLOv4 model in the previous stage. An example of the 

automatic cropping result based on the user-selected bounding 

box can be seen in Figure 12. 

The search results are considered relevant if the colors 

match, then further evaluated based on shape and type. For the 

camera category, images in the database are divided into 3 

types of cameras: digital camera, mirrorless, and DSLR. The 

query image (input) is black in color and of mirrorless type. 

Therefore, the relevant retrieved images are 8, the total 

retrieved images are 9, and the total relevant images in the 

database are 11. The calculation of Recall and Precision can 

be obtained using Equations (16) and (17). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑎𝑙𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
 𝑥 100% =  

8

11
𝑥 100% =

72.73 %           (16) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑎𝑙𝑙 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
 𝑥 100% =  

8

9
𝑥 100% =

88.89 %            (17) 

 

Calculation of the average recall and precision results from 

the overall testing can be seen in Table 5 below. 

 

Table 5. Overall Results of CTEBIR Algorithm Testing 

No Category Precision Recall 
Time 

Research (s) 

1 Camera 62.67% 46.39% 19.015 

2 Keyboard 46.88% 47.08% 22.532 

3 Laptop 52.50% 63.69% 65.332 

4 Mouse 40.20% 56.70% 40.929 

5 Printer 38.00% 32.74% 84.911 

6 Tablet 35.17% 19.14% 56.219 

Mean 45.90% 42.29% 43.2 

 

From the above test results, it can be seen that the average 

recall value is 44.29%, the average precision value is 45.90%, 

and the average search time is 43.2 seconds. 

 

 
Figure 13. Results of the CTEBIR Search 

 

These three values are highly dependent on the detection 

results in the previous stage. If the object detection results in 

the previous stage provide incorrect categories/names, then 

the search results will also be incorrect automatically. 

Meanwhile, if the object detection results do not produce any 

classes, then the search cannot be conducted. Examples of test 

results in the form of images can be seen in Figure 13. 

 

C.  Testing the CTEBIR Algorithm 

The CTEBIR algorithm was also tested using two servers 

with different hardware specifications, aiming to determine 

the impact of hardware specifications differences on 

performance. The testing data consists of two images from 

each category sourced from the previous 60 testing data. 

Explanation of the testing data can be found in Table 6 below. 

 

 

 

Table 6. Testing Data: Two Images per Category from 

Previous 60 Datasets 

Category Image  
Relevant 

Retrived 

All 

Retrived 

All 

Relevant 

Camera 
1 1 1 1 

2 6 9 11 

Keyboard 
1 6 8 10 

2 4 7 7 

Laptop 
1 4 10 11 

2 3 6 13 

Mouse 
1 3 10 5 

2 8 10 20 

Printer  
1 8 10 12 

2 5 10 9 

Tablet  
1 0 2 12 

2 4 6 14 

 

Table 7. Comparison of Search Time Between Server 1 and 

Server 2 Running CTEBIR Algorithm 

Category 

  Server 1 Server 2 

Precision Recall 
Retrieval 

Time (s) 

Retrieval 

Time (s) 

Camera 
100.00% 100.00% 8.66 24.00 

66.67% 54.55% 24.61 60.00 

Keyboard 
75.00% 60.00% 26.68 57.00 

57.14% 57.14% 17.63 40.00 

Laptop 
40.00% 90.91% 22.24 49.00 

50.00% 23.08% 17.13 33.50 

Mouse 
30.0% 60.0% 27.52 60.80 

80.0% 40.0% 52.33 116.60 

Printer  
80.00% 66.67% 122.91 278.70 

50.00% 55.56% 33.40 60.00 

Tablet  0.00% 0.00% 8.22 50.00 

 66.67% 28.57% 18.08 40.20 

Average 57.96% 53.04% 31.62 72.48 

 

From the Table 7, it can be observed that the search 

process when the CTEBIR algorithm is run on server 2 takes 

approximately twice as long as on server 1, where the search 

time using server 1 is 31.62 seconds and the search time using 

server 2 is 72.48 seconds. This proves that the search time 

depends on the device specifications. 

 

 

IV. CONCLUSION 

Based on the conducted testing, the following conclusions 

can be drawn: 

1. Our experiments show that utilizing the YOLOv4 

algorithm can enhance the accuracy and speed of visual 

searches by simplifying the search process based on 
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identified classes. Additionally, our precision assessment 

yielded a score of 95%, with individual scores for camera 

objects reaching 90%, keyboards achieving 85%, and 

laptops attaining 71%. These findings bolster the reliability 

of the CTEBIR algorithm in image matching and provide a 

deeper understanding of the system's effectiveness in 

accurately detecting and distinguishing objects. 

2. Recall, precision, and search time with the CTEBIR 

algorithm heavily depend on the object detection results 

obtained by the YOLOv4 algorithm. If the object detection 

produces incorrect classes, then the CTEBIR search results 

will inevitably be irrelevant. 

3. Implementing CTEBIR in object detection using the 

YOLO algorithm can enhance the accuracy and speed of 

the image search process by directly influencing the search 

space for these images, enabling their detection according 

to their respective classes. 
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