
145

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

Object Detection in E-Commerce Using YOLO in Real Time

Frans Mikael Sinaga1*, Gunawan2, Sunaryo Winardi3, Heru Kurniawan4, Wulan Sri Lestari5,

Karina Mannita Tarigan6

1,2,3,4,5,6Faculty of Informatics, Department of Informatics Engineering, Universitas Mikroskil, Medan, Sumatera

Utara, Indonesia

Email: 1*frans.sinaga@mikroskil.ac.id, 2gunawan@mikroskil.ac.id, 3sunaryo.winardi@mikroskil.ac.id,
4heru.kurniawan@mikroskil.ac.id, 5wulan.lestari@students.mikroskil.ac.id, 6201111834@students.mikroskil.ac.id

 (Received: 17 Feb 2024, revised: 14 Mar 2024, accepted: 15 Mar 2024)

Abstract

Presently, e-commerce platforms incorporate image search functionalities. Nevertheless, these systems possess constraints; input

images necessitate static and manual cropping since the system does not automatically generate bounding boxes. Addressing

this concern requires the implementation of an object detection algorithm to ascertain the quantity, location, and type of desired

objects within real-time bounding boxes before users finalize their selection. This capability empowers users to readily discern

their desired items, thereby augmenting the precision and efficiency of visual searches. Despite the availability of swifter object

detection algorithms such as R-CNN and Mask R-CNN, which prioritize accuracy over speed, rendering them less suited for

real-time detection, we opted to employ the YOLOv4 algorithm as an alternative, renowned for its efficacy in real-time object

detection. Furthermore, we adopted the Color, Texture, and Edge-Based Image Retrieval (CTEBIR) technique for image

matching. The results of our experimentation demonstrate that the utilization of the YOLOv4 algorithm can enhance the accuracy

and speed of visual searches by streamlining the search process based on the identified classes. Additionally, our precision

assessment yielded a score of 95%, with individual scores for camera objects reaching 90%, keyboards achieving 85%, and

laptops attaining 71%. These findings corroborate the dependability of the CTEBIR algorithm in image matching and contribute

to a deeper comprehension of the system's efficacy in accurately detecting and distinguishing objects.

Keywords: CTEBIR, Detection, E-commerce, Real-time, YOLOv4.

I. INTRODUCTION

E-commerce is a platform for buying and selling goods and

services, as well as transferring funds or data over the internet,

which is currently booming in the modern business world [1].

As a support system, e-commerce is equipped with search

systems, whether text-based, audio-based, or image-based [2].

Image search has also become a common and important tool

for studying many important topics ranging from spatial

vision, attention, and oculomotor control to memory, decision-

making, and rewards [3]. However, the visual search available

in e-commerce platforms still has several weaknesses: users

have to input a static image [2], and manual cropping of the

object/item to be searched is required because bounding boxes

are not automatically provided by the system [4]. Bounding

boxes in image detection systems are useful for increasing

detection speed and limiting the area of image checking for

comparison with data in the system, thus improving matching

accuracy with system data. Moreover, in image-based

searches, an image can consist of multiple objects, so an object

detection algorithm is needed to determine the quantity,

location, and type (classification) of desired objects in the form

of bounding boxes in real-time before users make a selection.

In addition to helping users ensure the type of object they want

to search for, the results of object detection can also enhance

search accuracy and efficiency [5].

In detecting an image, various extraction methods such as

color, texture, and edges can be employed. Color filtering is a

specific image processing technique based on a particular

color. The working principle of color filtering involves

comparing the color components of each pixel in the image

with a specific color [6]. However, relying solely on color

features may not be sufficient for object detection due to the

significant influence of lighting conditions and the presence of

numerous items during real-time image search. Therefore, it is

necessary to consider using other features for extraction, such

as texture and edges. YOLOv4 is one of the object detection

algorithms known for its excellent performance in terms of

both accuracy and detection time [7]. YOLOv4 also boasts a

simple architecture, trained to perform classification and

bounding box regression simultaneously, making it fast and

suitable for real-time detection [8]. Additionally, YOLOv4 is

a cleaner object detection method due to its end-to-end training

process [9].

146

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

As a solution, a real-time image search system will be

developed, implementing the YOLOv4 object detection

algorithm along with the Color, Texture, and Edge-Based

Image Retrieval (CTEBIR) technique in a web-based e-

commerce application. The proposed method will start by

inputting a set of images in real-time, which will be processed

by the YOLOv4 algorithm to predict a number of bounding

boxes and only display boxes with confidence scores above

0.25. This step serves as an initial stage for detection before

applying various proposed features. The YOLOv4 algorithm

will also classify the type of object based on conditional class

probabilities to narrow down the database's data coverage for

comparison with the input image during the image retrieval

stage [10], [11]. Next, users will be asked to select one object

(bounding box), which will then be cropped by the system,

proceeding to the image retrieval stage using the CTEBIR

technique. In the initial stage, each image in the database is

selected based on color similarity and taken to form a database

subset. Then, the Local Binary Pattern (LBP) and Canny Edge

Detection methods are used to extract texture and edge features

from the query image and images in the subset from the first

stage. Subsequently, the Manhattan distance information

between two corresponding features of the query image and

the selected image is computed and combined, then sorted

using the bubble sort algorithm [12]. Finally, users receive a

catalog sorted from products with the highest to lowest

similarity values in their images [13]. The image with the

highest similarity value will be the final result of the detection

process.

The expected outcome of this research is to accurately

detect images in real-time, thereby enhancing user comfort in

utilizing image search features, expanding insights into object

detection, and serving as a reference for other researchers in

the field of object detection using CTEBIR features.

II. RESEARCH METHODOLOGY

A. Research Stages

Visual search is an intricate process encompassing vision,

comprehension, memory, decision-making, and reward,

fundamentally altering the dynamics of how individuals

engage with surrounding products. The object of interest

sought by an observer is termed the "target," whereas other

items are designated as "distractors." Contemporary visual

search technology leverages Artificial Intelligence (AI) to

comprehend the content and context of images, presenting a

curated list of pertinent results [1].

Rather than requiring humans to adopt a computational

mindset, as in text-based searches, visual search analyzes

images utilizing visual cues and image metadata. Facilitated by

AI, visual search delivers the most pertinent results by

identifying similarities, such as specific colors or styles.

Undoubtedly, this facilitates a smoother retail experience,

enabling customers to swiftly locate desired items [2].

B. Images

An image comprises distinct points that collectively form a

cohesive entity imbued with meaning, encompassing both

"artistic" and "intrinsic" aspects. A high-quality image not only

showcases the aesthetic appeal of the composition (artistic) but

also ensures clarity for analysis and various applications

(intrinsic). Pixels, the smallest units composing an image,

govern its resolution and contribute significantly to its overall

quality and visual fidelity. represent the units of an image.

Pixel is short for picture The "element" refers to the graphic

representation of the smallest unit in a graphical image,

measured per inch. Each pixel not only represents a single

point in an image but also constitutes a component within a

box, commonly known as a cell, which is the smallest unit of

the image [1].

There are two main types of images: analog images and

digital images. An analog image is continuous, such as a

photograph captured with an analog camera or the display on

a TV or monitor (video signal). In contrast, a digital image is

stored on a storage medium and can be manipulated by a

computer. Images can further be classified into two categories:

still images and moving images. Still images are presented

sequentially, creating the illusion of motion to the viewer. Each

image in the sequence is referred to as a frame. Widescreen

films or television shows typically comprise hundreds to

thousands of frames [14].

C. Algorithm You Only Look Once (YOLO)

The YOLO (You Only Look Once) system is a real-time

object detection system that can identify multiple objects

simultaneously within a single frame. YOLO outperforms

other object detection systems in terms of accuracy and speed.

It can predict up to 9,000 classes, including classes that may

not be visible. YOLO's primary objective is to locate specific

objects within an image and classify them. In essence, it takes

an image as input and produces a vector containing bounding

boxes and class predictions.

The YOLO algorithm is a real-time object detection

algorithm that prioritizes speed and recognition over spending

excessive time on creating region proposals, thereby aiming

for efficient object detection rather than achieving perfect

detection of all objects [15]. The primary objective of

researching this algorithm is to develop an object detector

optimized for rapid operation in production systems and

parallel computation, rather than focusing solely on low

computational volume theoretical indicators (BFLOP). The

YOLO algorithm is user-friendly and straightforward to train,

enabling even conventional GPU users to achieve real-time,

high-quality, and convincing object detection results [10]. The

detection system operates by utilizing a repurposed classifier

or localizer for detection purposes. The model is applied to an

image across various locations and scales. Areas containing the

highest scored images are identified as detections [10].

D. Research Methodology

 The flowchart of the overall real-time visual search system

analysis process in e-commerce can be seen in Figure 1.

147

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

Figure 1. The Flowchart of The Entire Process of the Image

Search System.

E. Input Object

The input objects consist of a series of images captured by

the user's camera while scanning for the desired object in real-

time.

F. Object Detection

Object detection is performed using the YOLO algorithm,

which consists of 2 main processes: training and validation.

The input for this process includes a set of images from stage

1 and a dataset. The output of this process includes bounding

boxes and classifications of the recognized object classes by

the YOLO model. The object detection process consists of:

1. Prepare the dataset

The dataset of electronic items is obtained from the

OpenImagev6 dataset and downloaded using the OIDv6

application. The dataset consists of 16,760 images, with

15,512 images for training and 1,248 images for validation. It

is divided into 6 different categories of electronic items:

camera, printer, laptop, tablet, keyboard, and mouse, with

specifications as shown in the following Table 1:

Table 1. Dataset Information

Category Training Validation

Camera 5037 484

Keyboard 3331 287

Mouse 622 100

Tablet 784 54

Printer 210 74

Laptop 5528 249

2. Preprocessing Image Data

Next, annotation preprocessing is performed from the

OIDv6 format to the YOLO format as shown in Figure 2 and

Figure 3.

Figure 2. The OIDv6 Annotation Format (Before Conversion)

Figure 3. The YOLO Annotation Format (After Coversion)

3. Configuration of the YOLO Network

The network configuration is required as the model

network to load the data for training. The number of images

in one batch is 64, meaning that each iteration loads 64

images. Then, the batch is divided into several blocks that can

run in parallel on the GPU. The number of subdivisions or

batch blocks is set to 64 so that the modeling process divides

the batch into 64 parts. Additionally, changes in learning rate

are made after batch 10,000 and 11,250. The maximum batch

processed in one iteration is 12,500. The input size is

576x576. The class value in the [yolo] layer is set to 6

according to the number of classes to be trained, and the filter

value in each layer before the yolo layer is 33. All these

parameter values are calculated based on the Darknet

documentation.

4. Darknet Configuration

Darknet configuration is necessary to ensure the data

training process runs smoothly. This configuration process

begins by creating two files named obj.names and obj.data,

which are stored in the data directory. The obj.names file

contains the names/classes of the detected objects. Each class

is separated by a new line.

Then, the obj.data file contains the configuration for

training YOLO, including the number of classes, the location

of the list of image files for training and validation in .txt file

format, the names of object classes, and the backup directory

used to store temporary training weight results. Temporary

training weight results are usually saved if the model after

validation and mAP value on that model is better than the

previous validation. The contents of the configuration in the

obj.data file can be seen in Figure 4 below.

Figure 4. The Content of the Obj Data File

After creating the configuration files, the next step is to

configure Darknet to run training with GPU. Once the

building process is complete, the next step is to download the

148

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

pre-trained weights file for YOLOv4 and place it in the root

directory of Darknet.

5. Training the YOLO Model

The YOLO Model Training is conducted by executing the

command/darknet detector train data/obj.data cfg/YOLOv4-

obj.cfg YOLOv4.conv.137 -map -dont_show where

data/obj.data is the location of the Darknet configuration file,

cfg/YOLOv4-obj.cfg is the configuration file of the YOLOv4

model, and YOLOv4.conv.137 is the pre-trained weight file

for YOLOv4. -map is the argument to validate the mAP value

every 4 epochs.

G. Query Image

 The query image is an image within a bounding box chosen

by the user among the objects recognized by the YOLOv4

model and automatically cropped by the system. The class

resulting from object classification is also used to narrow down

the search space.

H. CBIR / CTEBIR (Color, Texture, and Edge Based

Image Retrieval)

 CTEBIR is one of the methods in CBIR (Content-Based

Image Retrieval). The algorithm works by initially selecting

suitable images from a large database based on color moment

information, which is then stored in a new database (subset).

Next, the Local Binary Pattern (LBP) and Canny edge

detection methods are used to extract texture and edge features

from the query image and the images in the subset obtained

from the first stage. Then, the Manhattan distance information

between the corresponding features of the query image and the

selected image is calculated and combined, and then sorted

using the bubble sort algorithm. The workflow of the image

processing process in performing detection can be seen in

Figure 5 below.

Figure 5. Block Diagram of Color, Texture, and Edge-based

CBIR [7].

1. Color Descriptor

In this algorithm, to minimize complexity and enhance the

effectiveness of CBIR, a global color descriptor is used at the

first retrieval level. Color moments (statistical measures) are

selected to represent the color details of the image. This

provides information on the distribution of pixel colors in two

forms of moments. The first-order moments provide average

information about the pixel distribution of a specific image

(Mean), and the closeness of the pixel distribution to the

average color is estimated by the second-order moments

(Standard Deviation). In the first stage of the retrieval process,

the average color information (mean) and the quantity of

different pixel values from the mean (standard deviation) of

the query image are globally estimated from the three color

channels (Red, Green, Blue) of the RGB color space using

Equations (1) and (2). If the pixels in the image are close to

the mean value, the standard deviation will be low. High

standard deviation indicates that a large number of pixel

colors do not approach the mean value.

𝑀𝑒𝑎𝑛(𝐼𝑐) =
1

𝑀 𝑥 𝑁
 ∑ ∑ 𝑃𝑐𝑖𝑗𝑁

𝑗=1
𝑀
𝑖=1 , 𝑐 = {𝑅, 𝐺, 𝐵} (1)

𝑆𝑡𝑑(𝐼𝑐) = (
1

𝑀 𝑥 𝑁
 ∑ ∑ (𝑃𝑐𝑖𝑗 − 𝑀𝑒𝑎𝑛(𝐼𝑐)2𝑁

𝑗=1
𝑀
𝑖=1)

1

2
 , 𝑐 =

{𝑅, 𝐺, 𝐵} (2)

Where, Ic = color channel information of an image, M =

size of rows, N = size of columns of an image, Pcij = pixel

value of an image at row i and column j in a specific color

channel.

Only the Mean (Ic) value is required to select images from

the database to generate a smaller search space. It cannot be

ensured that the Mean value is one of the accurate pixel

information from a given specific image. The image standard

deviation is important to provide details about the distribution

of image pixels around the mean information. This

information acts as lower and upper bounds for the mean

value and allows taking values between them. Therefore, the

details of the standard deviation are added and subtracted

from the Mean value. The result of this operation provides two

threshold values for each channel, namely: Low Threshold

(LT) as in Equation (3) and High Threshold (HT) as in

Equation (4) given as follows:

𝐿𝑇(𝐼𝑐) = 𝑀𝑒𝑎𝑛(𝐼𝑐) − 𝑆𝑡𝑑(𝐼𝑐), 𝑐 = {𝑅, 𝐺, 𝐵} (3)

𝐻𝑇(𝐼𝑐) = 𝑀𝑒𝑎𝑛(𝐼𝑐) + 𝑆𝑡𝑑(𝐼𝑐), 𝑐 = {𝑅, 𝐺, 𝐵} (4)

If the Mean (Ic) of an image from the database lies

between the two threshold values (LT and HT), then that

image is selected for the subsequent feature extraction

process. The threshold values for the R, G, and B color

channels are combined using the logical AND operator (&&).

Here, the first stage of the proposed work behaves as a filter

that takes all images from the database and passes the images

that meet the specified criteria at this level. At the end of this

first stage, the collectively selected images form a subset of

the original database. The subsequent stages use this subset of

images rather than the original database for image retrieval.

2. Texture Descriptor

Texture is another prominent descriptor in CBIR systems.

This extraction algorithm is performed on the selected subset

of images from the first stage of the retrieval process. Before

exploring LBP on the selected images, an RGB to grayscale

transformation is performed as a preprocessing step on those

images. For each iteration, a 3 × 3 overlapping grayscale

image is required as input. The pixel values available at the

149

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

Center Position (CP) of the 3 × 3 sub-block act as the

threshold values for its neighboring pixels. Using these

threshold values, a binary representation of the sub-block is

created. Then, the LBP value of the 3x3 sub-block is evaluated

in a clockwise direction. Finally, the LBP value is updated at

the center pixel position of the block in the image. The first

iteration of LBP is illustrated in Figure 6 (a) and Equation (5)

to show the LBP estimation on the 3 × 3 block representation.

𝐿𝐵𝑃𝑁(𝐼𝑐) = ∑ 𝑓 (𝑃𝑖 − 𝐶𝑃)2𝑖𝑁−1
𝑖=0 ; 𝑓(𝑝) = {

1; 𝑃 ≥ 0
0; 𝑃 < 0

 (5)

Where N = total neighboring pixels for CP in the 3 × 3 sub-

block.

In Figure 6 (b), the first 3 × 3 sub-block is taken from a

simple grayscale image sized 5 × 5. In this case, the pixel

value 21 at the center is the threshold value for its 8 neighbors.

The difference between the value of each neighboring pixel

and the value of the center pixel is calculated. If the difference

value is greater than or equal to 0, then the pixel value is

changed to 1; otherwise, it is updated to 0 instead. Next, this

8-bit binary value is converted to a decimal value and

rehabilitated in place of the center pixel, as shown in Figure 6

(c). After obtaining the LBP for the entire image, the

histogram of LBP values is calculated, which provides a

representation of the texture features of an image.

Figure 6. First Iteration of LBP: (a) Position of Pixels in the

3 × 3 Block Image (b) Generation of Binary Values Using

Threshold Values (c) Generation of LBP Values Through the

Obtained Binary Values [8].

3. Edge Descriptor

Usually, edges are formed by sudden changes in the

intensity values of the image captured by the edge detection

algorithm and hold the representation of the boundaries of

objects present in the image. Canny edge detection is used to

represent the shape of objects in the selected image at the end

of the first stage. Initially, color edge features are separated

into R, G, and B channels. The Canny Edge Detection

algorithm consists of 5 steps [16], including:

a. Noise Reduction.

Since the mathematics involved behind the scenes are

mostly based on derivatives, edge detection results are highly

sensitive to image noise. One way to remove noise from the

image is by applying Gaussian blur to smoothen it. To do this,

image convolution technique is applied with a Gaussian

Kernel (3x3, 5x5, 7x7, etc.). The kernel size depends on the

blurring effect desired. Essentially, the smaller the kernel, the

less noticeable the blur. The equation for the Gaussian filter

kernel size (2k + 1) × (2k + 1) can be seen in Equation (6).

𝐻𝑖𝑗 =
1

2𝜋𝜎2 exp (
(𝑖− (𝑘+1))

2
+ (𝑗− (𝑘+1))

2

2𝜎2) ; 1 ≤ 𝑖, 𝑗 ≤ (2𝑘 +

1) (6)

To begin, a two-dimensional Gaussian function is required

as in Equation (7).

𝐺 (𝑥, 𝑦) =
1

2𝜋𝜎2

−
𝑥2+ 𝑦2

2𝜎2
 (7)

The values of this function will create a convolution

matrix/kernel that we will apply to each pixel in the original

image. The kernel is usually quite small - the larger it is, the

more computations we have to perform on each pixel. Here, x

and y determine the delta from the central pixel (0, 0). For

example, if the chosen kernel radius is 3, x and y will range

from -3 to 3 (inclusive). The standard deviation - affects how

significantly neighboring pixels influence the computation

result of the central pixel.

b. Gradient Calculation.

The gradient calculation process detects the intensity and

direction of edges by computing the image gradient using

edge detection operators. These edges correspond to changes

in pixel intensity. To detect them, the simplest way is to apply

filters that highlight these intensity changes in both directions:

horizontal (x) and vertical (y).

When the image is smoothed, the derivatives Ix and Iy

with respect to x and y are computed. This can be

implemented by convolving I with Sobel kernels Kx and Ky,

respectively (Figure 7).

Figure 7. Sobel Filter for Both Directions (Horizontal and

Vertical)

The formula yields the magnitude matrix Equation (8):

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (𝐼) = √𝑥 (𝐼)2 + 𝑦(𝐼)2 (8)

The formula yields the angle matrix Equation (9):

𝑎𝑛𝑔𝑙𝑒(𝐼) = 𝑎𝑡𝑎𝑛2(𝑦(𝐼), 𝑥(𝐼))[∙ 180/𝜋] (9)

150

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

The result is almost as expected, but it can still be observed

that some edges are thick while others are thin. The next step,

Non-Maximum Suppression, will help reduce the thick lines.

Additionally, the intensity levels of the gradient between 0

and 255 are not uniform. The edges in the final result should

have the same intensity (e.g., white pixels = 255).

c. Non-Maximum Supression.

Ideally, the final image should have thin edges. Therefore,

Non-Maximum Suppression (NMS) should be performed to

thin out the edges. The principle used is to traverse all points

in the gradient intensity matrix and find pixels with maximum

values in the edge direction. The illustration of the traversal

direction can be seen in Figure 8 below.

Figure 8. The Traversal Direction in NMS Corresponds

to the Rotation of Angles.

The top left corner of the red box in the above image

represents the intensity pixels from the Gradient Intensity

matrix being processed. The corresponding edge direction is

represented by the orange arrow with an angle of -π radians

(+/- 180 degrees) as shown in Figure 9.

Figure 9. Checking Pixels in the -π Radian Direction

Edge directions are represented by the dashed orange lines

(horizontal from left to right). The goal of this algorithm is to

check whether pixels in the same direction are more or less

intense than the one being processed. In the example above,

pixel (i, j) is being processed, and pixels in the same direction

are highlighted in blue (i, j-1) and (i, j+1). If either of these

two pixels is more intense than the one being processed, only

the more intense pixel is retained. Pixel (i, j-1) appears to be

more intense because it is white (value 255). Therefore, the

intensity value of the current pixel (i, j) is set to 0. If there are

no pixels in the edge direction that have a stronger value, then

the intensity of the current pixel is retained.

In this case, the direction is the diagonal line represented

by the dashed orange dots. Therefore, the strongest pixel in

this direction is pixel (i-1, j+1). So, each pixel has 2 main

criteria (edge direction in radians, and pixel intensity

(between 0–255)). Based on this input, the steps of non-

maximum suppression are:

1. Create a matrix initialized to 0 with the same size as the

original gradient intensity matrix;

2. Identify the edge direction based on the angle values from

the angle matrix;

3. Check whether pixels in the same direction have higher

intensity than the pixel being processed;

4. Return the processed image using the NMS algorithm.

d. Double Treshold

This step aims to identify 3 types of pixels:

1. Strong pixels are pixels with very high intensity values

that are believed to contribute to the final edge.

2. Weak pixels are pixels with intensity values that are not

strong enough to be considered strong, but not small

enough to be considered irrelevant for edge detection.

3. Other pixels are considered irrelevant for edges.

e. Edge Tracking by Hysteresis.

Based on the thresholding results, hysteresis turns weak

pixels into strong ones if and only if at least one pixel around

the pixel being processed is a strong pixel.

4. Similarity Measure

The similarity measure is essential in all types of retrieval

systems because it provides a measure of the distance between

the low-level visual content of two images. The distance

information is a determinant factor of the similarity measure.

A very low resultant value indicates that the matching

database image is very close to the given query image. LBP

and edge feature similarity are estimated through the

Manhattan distance measurement given by Equations (10) and

(11).

𝐿𝐵𝑃𝑆𝑀(𝑄𝐿𝐵𝑃𝐼𝑀𝐴𝐺𝐸,𝑁𝑒𝑤𝐷𝐵𝐿𝐵𝑃𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆) =

 ∑ |𝑓𝑄𝐿𝐵𝑃𝐼𝑀𝐴𝐺𝐸
 (𝑖) − 𝑓𝑁𝑒𝑤𝐷𝐵𝐿𝐵𝑃 𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆

 (𝑖)|𝑁
𝑖=1 (10)

Where fQLBPIMAGE (i) is the ith LBP feature of the query image,

fNewDBLBPCOUNT IMAGE (i) is the ith LBP feature of an image in

the new database, and N is the total number of LBP features

in the image.

𝐸𝐷𝐺𝐸𝑆𝑀(𝑄𝐸𝐷𝐺𝐸𝐼𝑀𝐴𝐺𝐸,𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆) =

 ∑ |𝑓𝑄𝐸𝐷𝐺𝐸𝑅 𝐼𝑀𝐴𝐺𝐸
 (𝑖) − 𝑓𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝑅𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆

 (𝑖)|𝑁
𝑖=1

+ ∑ |𝑓𝑄𝐸𝐷𝐺𝐸𝐺 𝐼𝑀𝐴𝐺𝐸
 (𝑖) −𝑁

𝑖=1

𝑓𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝑅 𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆
 (𝑖)| + ∑ |𝑓𝑄𝐸𝐷𝐺𝐸𝐵 𝐼𝑀𝐴𝐺𝐸

 (𝑖) −𝑁
𝑖=1

𝑓𝑁𝑒𝑤𝐷𝐵𝐸𝐷𝐺𝐸𝑅 𝐶𝑂𝑈𝑁𝑇𝐼𝑀𝐴𝐺𝐸𝑆
 (𝑖)| (11)

Where fQEDGE_RIMAGE(i), fQEDGE_GIMAGE (i) dan fQEDGE_BIMAGE (i)

represent the ith edge feature of the query image in the R, G,

151

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

and B color channels, respectively. Similarly,

fNewDBEDGE_RCOUNTIMAGES(i), fNewDBEDGE_GCOUNT IMAGE(i) and

fNewDBEDGE_BCOUNT IMAGE provide the ith edge feature of a new

database image in the R, G, and B color channels,

respectively. NR, NG, and NB correspondingly denote the

number of edge features in the R, G, and B color channels of

an image.

LBP and edge feature distance values obtained randomly

vary from each other in an unbounded manner. Therefore,

normalization is important to confine large and small

variations in feature values to the range [0, 1]. Min-Max

normalization is implemented through Equations (12) and

(13) on the texture and edge feature distance measurements.

𝑁𝑂𝑅𝑀𝐴𝐿_𝐿𝐵𝑃_𝑆𝑀(𝑖) =
𝐿𝐵𝑃_𝑆𝑀(𝑖)−min (𝐿𝐵𝑃_𝑆𝑀)

max (𝐿𝐵𝑃_𝑆𝑀) −min (𝐿𝐵𝑃_𝑆𝑀)
 , 𝑖 =

 1, 2, … , 𝐾 (12)

𝑁𝑂𝑅𝑀𝐴𝐿_𝐸𝐷𝐺𝐸_𝑆𝑀(𝑖) =

𝐸𝐷𝐺𝐸_𝑆𝑀(𝑖)−min (𝐸𝐷𝐺𝐸_𝑆𝑀)

max (𝐸𝐷𝐺𝐸_𝑆𝑀) −min (𝐸𝐷𝐺𝐸_𝑆𝑀)
 , 𝑖 = 1, 2, … , 𝐾 (13)

Where K is the total number of images in the new dynamic

database (which will change according to the selection rule in

the first stage); LBP_SM(i) represents the similarity measure

value based on LBP of the i-th image in the new database;

min(LBP_SM) and max(LBP_SM) indicate the minimum and

maximum texture feature similarity values for the entire set of

images in the new database.

I. Displaying the product catalog search results.

The results from CTEBIR are presented as a product

catalog for the user, complete with product names, prices, and

product details. These products can then be ordered and

purchased by the user.

J. Displaying the product catalog search results.

The visual search results will be evaluated using precision

and recall calculations using Equations (14) and (15). High

precision and recall scores indicate that the search results have

a high level of accuracy and relevance.

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑅𝑒𝑡𝑟𝑖𝑣𝑒𝑑

𝐴𝑙𝑙 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡
 (14)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑅𝑒𝑡𝑖𝑒𝑣𝑒𝑑

𝐴𝑙𝑙 𝑅𝑒𝑡𝑟𝑖𝑣𝑒𝑑
 (15)

Where:

True Positives (TP) are the correctly retrieved relevant items.

False Positives (FP) are the irrelevant items retrieved as

relevant.

False Negatives (FN) are the relevant items not retrieved

III. RESULT AND DISCUSSION

The algorithm testing is conducted on two algorithms: the

YOLO object detection algorithm and the CTEBIR algorithm

for image search. The specifications of the devices used for

algorithm testing can be seen in Table 2.

Table 2. Specifications of the Algorithm Testing Device

No
Specifi

cation
Server 1 Server 2 Client

1 CPU Intel(R)

Core(TM) i5-

2400

3.10GHz

Intel®

Celeron®

B830 -

1.8GHz (2

Cores)

Intel(R)

Core(TM

) i5-

9300H

CPU @

2.40GHz

2 GPU Nvidia GTX

460 with

Max-Q

Design (4 GB

DDR 6

VRAM)

Intel HD

Graphics

Nvidia

GTX

1650

with

Max-Q

Design (

4 GB

DDR 6

VRAM)

3 RAM 8GB DDR3 8GB DDR3

1333

8 GB

DDR 4

4 Storage HDD 500GB 250GB

(SSD - OS)

320GB

(HDD)

256 GB

2666

MHz

5 Opera

tion

Systems

MX Linux

XFCE 19.4

x64

Manjaro

KDE

21.0.7

Windows

10 Home

64 Bit

Version

20H2
6 Browser Google

Chrome

v91.0.4472.12

4

Microsoft

Edge Beta

93.0.961.11

-1

Google

Chrome

v91.0.447

2.124

A. Yolo Algorithm Testing

Manual and automatic testing of the YOLO algorithm are

conducted by calculating the mAP from the detection output

to assess its accuracy. The testing data consists of 60 testing

samples from Kaggle for manual testing and 1,248 data

samples from OpenImagev6 for automatic testing. An

example of detection using YOLO can be seen in Figure 10

below.

Figure 10. Detection Results of YOLOv4

The precision values from the manual testing detection

results can be seen in Table 3.

152

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

Table 3. Table of Precision Values from Manual Testing

Results using YOLOv4

No
Precision

Camera Keyboard Laptop

1 Camera: 46%

Camera: 38%

Undetected Laptop: 85%

2 Camera: 78% Keyboard:86% Laptop: 46%

3 Camera: 99% Keyboard: 51% Laptop: 65%

4 Camera: 94% Keyboard: 32% Laptop: 94%

5 Camera: 91% Keyboard: 86% Laptop: 88%

6 Camera: 95%

Camera: 27%

Keyboard: 67% Laptop: 67%

7 Camera: 93%

Camera: 85%

Camera: 28%

Keyboard: 55% Laptop: 55%

8 Undetected Keyboard: 67% Laptop: 67%

9 Camera: 89% Keyboard: 45% Laptop: 45%

10 Camera: 71% Keyboard: 33% Laptop: 33%

Nos
Precision

Mouse Printer Tablet

1 Mouse: 54% Printer: 54% Tablet: 71%

2 Mouse: 90% Printer: 27% Tablet: 21%

3 Mouse: 71% Printer: 28% False Detection

4 Mouse: 97% False Detection False Detection

5 Mouse: 76% Printer: 37% Tablet: 47%

6 Mouse: 73% Printer: 51% Tablet: 85%

7 Mouse: 61% Printer: 53% Tablet: 65%

8 Mouse: 93% Printer: 68% False Detection

9 Mouse: 44% Printer: 35% Tablet: 60%

10 Mouse: 98% Printer: 71% Tablet: 26%

The testing results presented only include correct

detections according to their categories. For detections that

are incorrect or missed, a precision value of 0% is assigned.

Out of 60 trials, 5 objects were incorrectly detected, and 2

inputs were missed by YOLOv4. Subsequently, the mAP is

calculated by averaging the precision results from each

category to obtain 6 APs (Average Precisions). These six APs

are then averaged to yield the mAP. Based on the mAP

calculation results in Table 4, it can be observed that the mAP

value is 58.3375%. The process of calculating mAP can be

seen in Table 4.

Table 4.Calculation Process of mAP for YOLOv4 Based on

Table 3

No

Precision (%)

Came

ra

Key

boar

d

Lapto

p

Mo

use
Printer

Tab

let

1 42 0 85 54 54 71

2 78 86 46 90 27 27

3 99 51 65 71 28 0

4 94 32 94 97 0 0

5 91 86 88 76 37 47

6 95 67 84 73 51 85

7 58.25 55 0 61 53 65

8 0 67 84 93 68 0

9 89 45 67 44 35 60

10 71 33 86 98 71 26

AP

(%)

71.72

5

52.2 69.9 75.7 42.4 38.1

mAP (%) = 58.3375

Automatic testing on the YOLOv4 model yielded an mAP

of 78.64% with a total detection time of 39 seconds, as shown

in Figure 11 below. There is a difference of 20.31% between

manual and automatic testing.

Figure 11. Results of YOLOv4 Testing on Validation Data

B. Testing the CTEBIR Algorithm

The CTEBIR algorithm is tested by calculating the Recall

and Precision values for each category. The testing dataset

consists of 60 data points.

Figure 12. Search Image: Before Cropping (Left) and After

Cropping (Right)

The input data for this algorithm is obtained from the

cropped images based on the bounding boxes detected by the

YOLOv4 model in the previous stage. An example of the

automatic cropping result based on the user-selected bounding

box can be seen in Figure 12.

The search results are considered relevant if the colors

match, then further evaluated based on shape and type. For the

camera category, images in the database are divided into 3

types of cameras: digital camera, mirrorless, and DSLR. The

query image (input) is black in color and of mirrorless type.

Therefore, the relevant retrieved images are 8, the total

retrieved images are 9, and the total relevant images in the

database are 11. The calculation of Recall and Precision can

be obtained using Equations (16) and (17).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑎𝑙𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
 𝑥 100% =

8

11
𝑥 100% =

72.73 % (16)

153

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑎𝑙𝑙 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
 𝑥 100% =

8

9
𝑥 100% =

88.89 % (17)

Calculation of the average recall and precision results from

the overall testing can be seen in Table 5 below.

Table 5. Overall Results of CTEBIR Algorithm Testing

No Category Precision Recall
Time

Research (s)

1 Camera 62.67% 46.39% 19.015

2 Keyboard 46.88% 47.08% 22.532

3 Laptop 52.50% 63.69% 65.332

4 Mouse 40.20% 56.70% 40.929

5 Printer 38.00% 32.74% 84.911

6 Tablet 35.17% 19.14% 56.219

Mean 45.90% 42.29% 43.2

From the above test results, it can be seen that the average

recall value is 44.29%, the average precision value is 45.90%,

and the average search time is 43.2 seconds.

Figure 13. Results of the CTEBIR Search

These three values are highly dependent on the detection

results in the previous stage. If the object detection results in

the previous stage provide incorrect categories/names, then

the search results will also be incorrect automatically.

Meanwhile, if the object detection results do not produce any

classes, then the search cannot be conducted. Examples of test

results in the form of images can be seen in Figure 13.

C. Testing the CTEBIR Algorithm

The CTEBIR algorithm was also tested using two servers

with different hardware specifications, aiming to determine

the impact of hardware specifications differences on

performance. The testing data consists of two images from

each category sourced from the previous 60 testing data.

Explanation of the testing data can be found in Table 6 below.

Table 6. Testing Data: Two Images per Category from

Previous 60 Datasets

Category Image
Relevant

Retrived

All

Retrived

All

Relevant

Camera
1 1 1 1

2 6 9 11

Keyboard
1 6 8 10

2 4 7 7

Laptop
1 4 10 11

2 3 6 13

Mouse
1 3 10 5

2 8 10 20

Printer
1 8 10 12

2 5 10 9

Tablet
1 0 2 12

2 4 6 14

Table 7. Comparison of Search Time Between Server 1 and

Server 2 Running CTEBIR Algorithm

Category

 Server 1 Server 2

Precision Recall
Retrieval

Time (s)

Retrieval

Time (s)

Camera
100.00% 100.00% 8.66 24.00

66.67% 54.55% 24.61 60.00

Keyboard
75.00% 60.00% 26.68 57.00

57.14% 57.14% 17.63 40.00

Laptop
40.00% 90.91% 22.24 49.00

50.00% 23.08% 17.13 33.50

Mouse
30.0% 60.0% 27.52 60.80

80.0% 40.0% 52.33 116.60

Printer
80.00% 66.67% 122.91 278.70

50.00% 55.56% 33.40 60.00

Tablet 0.00% 0.00% 8.22 50.00

 66.67% 28.57% 18.08 40.20

Average 57.96% 53.04% 31.62 72.48

From the Table 7, it can be observed that the search

process when the CTEBIR algorithm is run on server 2 takes

approximately twice as long as on server 1, where the search

time using server 1 is 31.62 seconds and the search time using

server 2 is 72.48 seconds. This proves that the search time

depends on the device specifications.

IV. CONCLUSION

Based on the conducted testing, the following conclusions

can be drawn:

1. Our experiments show that utilizing the YOLOv4

algorithm can enhance the accuracy and speed of visual

searches by simplifying the search process based on

154

TEKNIKA, Volume 13(1), Maret 2024, pp. 145-154

ISSN 2549-8037, EISSN 2549-8045

Sinaga, F.M., et.al.: Object Detection in E-Commerce Using YOLO in Real Time

DOI: 10.34148/teknika.v13i1.773

identified classes. Additionally, our precision assessment

yielded a score of 95%, with individual scores for camera

objects reaching 90%, keyboards achieving 85%, and

laptops attaining 71%. These findings bolster the reliability

of the CTEBIR algorithm in image matching and provide a

deeper understanding of the system's effectiveness in

accurately detecting and distinguishing objects.

2. Recall, precision, and search time with the CTEBIR

algorithm heavily depend on the object detection results

obtained by the YOLOv4 algorithm. If the object detection

produces incorrect classes, then the CTEBIR search results

will inevitably be irrelevant.

3. Implementing CTEBIR in object detection using the

YOLO algorithm can enhance the accuracy and speed of

the image search process by directly influencing the search

space for these images, enabling their detection according

to their respective classes.

REFERENCES

[1] S. Amin and K. Kansana, “A Review Paper on E-

Commerce,” 2016. [Online]. Available:

https://www.researchgate.net/publication/304703920
[2] G. Anand, S. Wang, and K. Ni, “Large-scale visual

search and similarity for e-commerce,” in Applications

of Machine Learning 2021, M. E. Zelinski, T. M. Taha,

and J. Howe, Eds., SPIE, Aug. 2021, p. 31. doi:

10.1117/12.2594924.

[3] M. P. Eckstein, “Visual search: A retrospective,” J Vis,

vol. 11, no. 5, pp. 14–14, Dec. 2011, doi:

10.1167/11.5.14.

[4] S. Vijayanarasimhan and K. Grauman, “Efficient

region search for object detection,” in CVPR 2011,

IEEE, Jun. 2011, pp. 1401–1408. doi:

10.1109/CVPR.2011.5995545.

[5] V. Narayanan and M. Likhachev, “PERCH: Perception

via search for multi-object recognition and

localization,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA), IEEE, May 2016,

pp. 5052–5059. doi: 10.1109/ICRA.2016.7487711.

[6] Y. F. Dewi and N. Fadillah, “Deteksi Objek Berwarna

Merah Secara Real Time Dengan Algoritma Color

Filtering,” Jurnal Media Informatika Budidarma, vol.

3, no. 2, p. 140, Apr. 2019, doi:

10.30865/mib.v3i2.1114.

[7] Q. Liu, X. Fan, Z. Xi, Z. Yin, and Z. Yang, “Object

detection based on Yolov4-Tiny and Improved

Bidirectional feature pyramid network,” J Phys Conf

Ser, vol. 2209, no. 1, p. 012023, Feb. 2022, doi:

10.1088/1742-6596/2209/1/012023.

[8] E. R. Setyaningsih and M. S. Edy, “YOLOv4 dan

Mask R-CNN Untuk Deteksi Kerusakan Pada Karung

Komoditi,” Teknika, vol. 11, no. 1, pp. 45–52, Mar.

2022, doi: 10.34148/teknika.v11i1.419.

[9] R. Gai, N. Chen, and H. Yuan, “A detection algorithm

for cherry fruits based on the improved YOLO-v4

model,” Neural Comput Appl, vol. 35, no. 19, pp.

13895–13906, Jul. 2023, doi: 10.1007/s00521-021-

06029-z.

[10] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,

“YOLOv4: Optimal Speed and Accuracy of Object

Detection,” Apr. 2020, [Online]. Available:

http://arxiv.org/abs/2004.10934

[11] J. Yu and W. Zhang, “Face Mask Wearing Detection

Algorithm Based on Improved YOLO-v4,” Sensors,

vol. 21, no. 9, p. 3263, May 2021, doi:

10.3390/s21093263.

[12] L. K. Pavithra and T. S. Sharmila, “An efficient

framework for image retrieval using color, texture and

edge features,” Computers & Electrical Engineering,

vol. 70, pp. 580–593, Aug. 2018, doi:

10.1016/j.compeleceng.2017.08.030.

[13] G. Ramaditya and W. F. Al Maki, “Single Object

Tracking with Minimum False Positive using

YOLOv4, VGG16, and Cosine Distance,” Jurnal

Media Informatika Budidarma, vol. 6, no. 4, p. 2196,

Oct. 2022, doi: 10.30865/mib.v6i4.4827.

[14] N. D. Lynn, A. I. Sourav, and A. J. Santoso,

“Implementation of Real-Time Edge Detection Using

Canny and Sobel Algorithms,” IOP Conf Ser Mater Sci

Eng, vol. 1096, no. 1, p. 012079, Mar. 2021, doi:

10.1088/1757-899X/1096/1/012079.

[15] X. Zhou, L. Jiang, C. Hu, S. Lei, T. Zhang, and X.

Mou, “YOLO-SASE: An Improved YOLO Algorithm

for the Small Targets Detection in Complex

Backgrounds,” Sensors, vol. 22, no. 12, p. 4600, Jun.

2022, doi: 10.3390/s22124600.

[16] P. Laia, “Penerapan Metode Prewitt, Canny dan Sobel

Pada Proses Deteksi Tepi Citra,” Jurnal Media

Informatika Budidarma, vol. 2, no. 1, Jan. 2018, doi:

10.30865/mib.v2i1.996.

.

