
137

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

Design and Implementation of Blockchain-Based Office

Attendance System

Yustus Eko Oktian

Department of Information Systems, Universitas Ciputra Surabaya, East Java, Indonesia

Email: yustus.oktian@ciputra.ac.id

 (Received: 23 Feb 2024, revised: 13 Mar 2024, accepted: 14 Mar 2024)

Abstract

The office attendance system has shifted from using physical forms to digital inputs to minimize data errors and data loss when

taking attendance. Unfortunately, digital systems generally still use traditional databases where the admin's role is crucial, and

there is potential for fraud (e.g., admitting attendance of a non-attending person or manipulating a targeted person’s log due to

personal grudges, competition, or other reasons) if the admin is dishonest. In this paper, we propose Absenin, a blockchain-based

office attendance system, which replaces the role of traditional databases with blockchain and smart contracts to make it secure

from malicious admins and fair for other participants. We create an Attendance Smart Contract that will run on the Ethereum

blockchain. Admins and employees will interact with this smart contract to carry out attendance system operations. Absenin is

also designed to have real-time attendance data, but the attendance machine does not need to be connected to the Internet, which

is a unique feature of our system that no previous works have attempted. Despite using blockchain and smart contracts, our

evaluation results show that Absenin is able to produce relatively small processing delays, and gas usage on the blockchain is

still far below the gas limit of the Ethereum mainnet. Therefore, we can assure that the system is feasible and can be applied to

organizations with a scale of thousands, tens, or hundreds of thousands of employees.

Keywords: Blockchain, Data Security, Attendance System, Information System

I. INTRODUCTION

With the advancement of information technology, office

attendance systems are transitioning from physical to digital.

Employees no longer need to fill out attendance forms in

written physical forms. Instead, those forms can now be filled

out digitally [1]. Digital data allows the attendance system to

be represented in various forms, such as using Bluetooth

signals [2], attaching RFID cards [3], scanning barcodes [4] or

QR codes [5], using GPS location or cellular signals [6], and

through face recognition [7]. This data is typically stored in a

database, and the attendance results are generally displayed

back to the user in real-time after users complete their

attendance.

Unfortunately, the use of traditional databases still has

shortcomings where the role of an admin is too powerful for

the organization. Specifically, with the admin role, we can

easily modify attendance data from the system. If the admin is

malicious (or the admin account falls into the hands of

malicious individuals), the admin can edit attendance data to

benefit certain parties (e.g., superior officials in the

organization) or harm others (e.g., employees that the admin

dislikes or is currently arguing with). In addition, previous

digital attendance systems [1,2,3,6,7] also have other

problems, such as attendance machines that require large

resources and are required to be connected to the Internet 24/7.

Driven by the motivation to solve the previously mentioned

issues, in this paper, we propose a blockchain-based digital

attendance system called Absenin. The use of blockchain (the

technology behind the success of Bitcoin [8]) is utilized to

replace the role of traditional databases so that we can improve

the security and credibility of data storage in the system. More

precisely, smart contracts [9] will be developed to store user

attendance data so that all attendance transactions can be

tracked and audited properly. This way, malicious edits can be

detected easily. We utilize Merkle Root [10] to create

attendance codes that will later be locked in smart contracts,

similar to the way commitment hash works in blockchain [11].

Users can input the attendance code into the smart contract,

and the system will verify the code and record the time when

the user checked-in/out. To our knowledge, there are still few

papers that utilize blockchain for attendance systems, and this

paper can serve as an example to expand the development of

blockchain in Indonesia.

We organize the rest of this paper as follows. Section 2

delves deeper into our proposed attendance system, starting

138

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

from the motivation, design, architecture, and workflow of the

system. In Section 3, we discuss the implementation process

and evaluation of our system. We then investigate similar

attendance systems and analyze the comparison between our

system and related works in Section 4. Finally, we conclude in

Section 5.

II. SYSTEM MODEL

This section outlines the inner workings of our attendance

system. We begin the discussion with the problem statement

that motivated us to create our proposal. We then elaborate on

the design, architecture, and workflow of the attendance

system to provide a deeper understanding of our system.

A. Problem Statement

Digital attendance systems can potentially reduce or even

eliminate input errors or the possibility of data loss that exist

in the physical system. However, conventional digital

attendance systems still use traditional databases, where the

role of an admin has absolute dominance in the system. For

example, an admin can manipulate attendance data in the

system. If the admin is malicious (or the admin's password is

stolen by certain parties), then attendance data can be changed

to benefit or harm certain parties. Therefore, to maintain

security and fairness for all office employees, a high-integrity

attendance system is heavily needed.

In addition, digital attendance systems must be built as real-

time systems, where users must be able to know whether they

have successfully taken attendance logs or not. They also need

to know at what time they are recorded as attending/leaving the

office in the system. To support real-time behavior, attendance

machines are generally made to be connected to the Internet

24/7. However, this way, the machine actually becomes

vulnerable to cyber-attacks, where attackers can further

infiltrate the organization network through the infected

attendance machines. The reliance on the Internet also means

that the machine will be unavailable when problems occur in

the company such as sudden power outages or Internet service

downtime. Thus, a challenge arises in creating a more robust

real-time attendance system that does not burden the

attendance machine. The attendance machine must have low-

end hardware specifications and does not even need to be

connected to the Internet.

B. Features

Based on the problems mentioned earlier, we have

developed an attendance system with the following features:

• The attendance machine does not need to be connected

to the Internet. If the computer network in the given office

is having problems, the attendance system can still operate

normally as long as users can use another way, such as

cellular data (not through the office network), to connect to

the Internet.

• The attendance machine does not require very high

machine specifications. The machine does not need to be

able to process thousands of requests per second (rps)

because the process of creating attendance codes is not

done on-demand but can be executed in advance (pre-

demand).

• Attendance codes have an expiration period. We can set

the active period of an attendance code. Users cannot use

the same attendance code to log their attending/leaving

office logs. Similarly, the code for one day is not valid for

the following day.

• All attendance data is securely stored with high

integrity in the blockchain. If an audit process is required,

then auditors can easily check the validity of data. We

cannot create fake attendance data because the source of the

attendance code is accompanied by a digital signature from

the attendance machine. In addition, users also include their

digital signatures when inputting their attendance log. This

way, an admin cannot maliciously edit the log without

being detected.

Figure 1. System Architecture for Absenin, Which Includes

Admin, User, Attendance Machine, Smartphones,

Blockchain, and Attendance Smart Contract (ASC).

C. System Architecture

Figure 1 illustrates the architecture of Absenin. Several

actors and entities involved in our system are as follows:

• Admin: Individuals appointed by the organization to

manage the information system in the office. Ideally, they

are honest and trustworthy individuals who can manage the

attendance machine effectively and refrain from malicious

actions, such as distributing attendance codes out-of-band

to certain parties.

• User: Employees from a given organization. For the sake

of simplicity, we assume that no specific roles are assigned

individually to each office employee, so superiors and

subordinates are treated equally in our system.

• Attendance machine: Machines placed at various

locations in the office are used to display attendance codes

to users.

• Mobile apps: Applications used by users to input the

attendance code displayed on the attendance machine for

attendance purposes. Attendance data will be directly sent

to blockchain nodes from the application.

• Blockchain network: A peer-to-peer network managed by

blockchain nodes. In this network, a smart contract called

Attendance Smart Contract (ASC) is used as the root-of-

trust, where all actors and entities in our system highly trust

this smart contract.

139

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

Figure 2. Workflow of Absenin, Which Comprises of Entity Registration, Attendance Code Creation, and the Usage of

Attendance Code to Record Attendance in Our System.

Table 1. The Notation List That We Used in This Paper.

Notation Description

𝑆𝐾, 𝑃𝐾 Private Key, Public Key

𝑎, 𝑢, 𝑚 Admin, User, Attendance Machine

𝑐, 𝑡, 𝑡̂ Attendance Code, Attendance Time, List of

Attendance Logs

𝑟, 𝜌, 𝜌̂ Merkle Root, Merkle Path, List of Merkle

Path for a single Merkle Root

𝑡𝑑𝑎𝑦 , 𝑡𝑛𝑜𝑤 Start time in a given day (in epoch

timestamp), current time (in epoch

timestamp)

𝐻() Cryptographic hash function (for example,

using SHA-256 algorithm)

𝑋 ∥ 𝑌 Concatenation of byte 𝑋 and 𝑌

Algorithm 1. Attendance Smart Contract (ASC)

1. initiate 𝑈̂, 𝑀̂, 𝑅̂, 𝐶̂ = 𝜃 // 1D array/dictionary

2. initiate 𝑇̂ = 𝜃 // 2D array/dictionary

3. initiate 𝐴̂, where 𝐴̂ = {𝑃𝐾𝑎1
, 𝑃𝐾𝑎2

, … , 𝑃𝐾𝑎𝐴
}; 𝐴 is

the total number of admin

4. procedure RegisterUser(𝑃𝐾𝑢):

5. store 𝑃𝐾𝑢 in 𝑈̂

6. procedure RegisterMachine(𝑃𝐾𝑎 , 𝑃𝐾𝑚):

7. revert if 𝑃𝐾𝑎 ∉ 𝐴̂

8. store 𝑃𝐾𝑚 in 𝑀̂

9. procedure RecordRoot(𝑃𝐾𝑎 , 𝑃𝐾𝑚, 𝑟):

10. revert if 𝑃𝐾𝑎 ∉ 𝐴̂

11. revert if 𝑃𝐾𝑚 ∉ 𝑀̂

12. store 𝑟 in 𝑅̂

13. procedure RecordAttendance(𝑃𝐾𝑢, 𝑃𝐾𝑚, 𝑐, 𝜌):

14. revert if 𝑃𝐾𝑢 ∉ 𝑈̂

15. revert if 𝑃𝐾𝑚 ∉ 𝑀̂

16. revert if 𝑐 ∈ 𝐶̂
17. make merkle root 𝑟′ out of attendance code 𝑐

and merkle path 𝜌

18. revert if 𝑟′ ∉ 𝑅̂

19. store 𝑐 in 𝐶̂

20. 𝑡𝑑𝑎𝑦 = 𝑡𝑛𝑜𝑤 − (𝑡𝑛𝑜𝑤 𝑚𝑜𝑑 86400) // 86400 =

seconds in a day
21. revert if 𝑡𝑛𝑜𝑤 > 𝑡𝑑𝑎𝑦 + 86400

22. get 𝑡̂ from 𝑇̂ using key 𝑡𝑑𝑎𝑦 and 𝑃𝐾𝑢

23. add 𝑡, where 𝑡 = 𝑡𝑛𝑜𝑤, to 𝑡̂

24. function GetArriveTime(𝑃𝐾𝑢, 𝑡𝑑𝑎𝑦):

25. get 𝑡̂ from 𝑇̂ using key 𝑡𝑑𝑎𝑦 and 𝑃𝐾𝑢

26. return smallest 𝑡 from 𝑡̂

27. function GetLeaveTime(𝑃𝐾𝑢 , 𝑡𝑑𝑎𝑦):

28. get 𝑡̂ from 𝑇̂ using key 𝑡𝑑𝑎𝑦 and 𝑃𝐾𝑢

29. return largest 𝑡 from 𝑡̂

D. Workflow

Our system can be divided into six major steps: (i) entity

registration process, (ii) attendance code creation process, (iii)

attendance code display, (iv) attendance code submission, (v)

attendance code verification, and (vi) storing of attendance

codes. The system workflow is summarized in Figure 2.

Meanwhile, Table 1 shows the notations that we use for the

rest of this paper.

Registration Process: Users who wants to use our

attendance system must first register their public key in the

ASC through the RegisterUser() method. Similarly,

admin also needs to register each attendance machine to the

ASC using the RegisterMachine() method. In this case,

we assume that the admin's public key has been initially

created and registered in the ASC when ASC is deployed in

the blockchain network. This registration process is crucial

because we implement access control system within the ASC,

where several ASC functions can only be executed by the

admin. The complete operation of the ASC can be seen in

Algorithm 1.

Code Generation Process: The attendance machine first

generates an attendance code through the GenerateCode()

function by: (i) creating a random code, then hashing the code

combined with the public key of the machine. The machine

will generate several codes at once for a certain period (e.g.,

one hour, one day, or one month). The generated codes will

be arranged to form a Merkle Tree, and the Merkle Root result

will be displayed to the admin through the ShowRoot()

140

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

function and submitted by the admin to the ASC through the

SubmitRoot() and RecordRoot() functions. Details of

how the attendance machine works can be seen in Algorithm

2, and for the admin mobile apps in Algorithm 3.

Attendance Code Display Process: The attendance

machine will display the attendance code through the

ShowCode() function sequentially from one code to another.

One code will only appear for a few seconds (e.g., 3 seconds)

and one code can only be used for one user. The code also

only appear once in one generation period. For example, if we

generate 1000 codes to be displayed for one hour, code A will

only appear once in that 1-hour duration; code A cannot (and

should not) appear twice. The system is designed this way

because the attendance machine is offline and cannot detect

which codes have been used by users for attendance.

Therefore, the machine only displays the code for a very short

duration with the hope that the code can only be seen and used

by one user.

Algorithm 2. Pseudocode for Attendance Machine

1. initiate 𝑆𝐾𝑚, 𝑃𝐾𝑚 , 𝑟, 𝜌̂

2. initiate 𝐶̂ = 𝜃 // 1D array/dictionary

3. procedure GenerateCode(𝑛): // 𝑛 is the number
of codes to make

4. i = 0
5. while 𝑖 < 𝑛:
6. 𝑖𝑑 = 𝐶𝑟𝑒𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝐷()
7. 𝑐 = 𝐻(𝑃𝐾𝑚 ∥ 𝑖𝑑)

8. store 𝑐 in 𝐶̂
9. i++
10. end while

11. (𝑟, 𝜌̂) = 𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡(𝐶̂)

12. procedure ShowCode():

13. foreach 𝑐 in 𝐶̂:
14. get 𝜌 for 𝑐 from 𝜌̂
15. display (𝑃𝐾𝑚, 𝑐, 𝜌) for 3 seconds
16. end foreach

17. procedure ShowRoot():
18. display (𝑃𝐾𝑚, r)

Algorithm 3. Pseudocode for Mobile Apps in Admin

1. initiate 𝑆𝐾𝑎, 𝑃𝐾𝑎

2. procedure SubmitRoot():
3. get (𝑃𝐾𝑚, 𝑟) via out-of-band from ShowRoot()

in Algorithm 2
4. call RecordRoot(𝑃𝐾𝑎, 𝑃𝐾𝑚, 𝑟) in ASC

Algorithm 4. Pseudocode for Mobile Apps in User

1. initiate 𝑆𝐾𝑢 , 𝑃𝐾𝑢

2. procedure SubmitAttendance():
3. get (𝑃𝐾𝑚, 𝑐, 𝜌) via out-of-band from

ShowCode() in Algorithm 2
4. call RecordAttendance(𝑃𝐾𝑢 , 𝑃𝐾𝑚, 𝑐, 𝜌) in ASC

Attendance Code Collection Process: If there are two or

more users who are found to be using the same code, the "first

come, first serve" rule will apply. The user who first inputs

the code into the ASC through the SubmitAttendance()

and RecordAttendance() functions will be considered

valid, while subsequent users using the same code will fail.

Failed users must wait for the next code to appear to

successfully checked-in. The process of inputting the code

into the blockchain is online and real-time, so users will

receive feedback from the system indicating whether their

attendance was successful or not. Details of the user's mobile

app workflow can be seen in Algorithm 4.

Attendance Code Verification Process: Users collect the

attendance code, merkle root hash, merkle path, and public

key from the attendance machine when checking-in through

RecordAttendance(). After that, the ASC verifies the

user's input. First, the ASC checks whether the public key of

the attendance machine is already registered with the ASC.

Second, the ASC ensures that this attendance code has not

been used by other users. Third, the ASC creates a root hash

of the attendance code and merkle path, then the ASC will

compare whether the newly formed root hash is the same as

the root hash originally saved during the attendance code

creation process through the RecordRoot() function.

Fourth, the ASC ensures that the code has not expired. If all

verification processes are successful, the ASC assigns this

attendance code to the user who called

RecordAttendance(), so this code cannot be used by other

users.

Attendance Code Storage Process: The attendance code

is stored along with the time (in Epoch time format) indicating

when this code was processed. This time represents when the

user checked-in. The ASC will store at least two attendance

inputs from the user. The earliest input in one day is the

attending office time, and the latest input on the same day will

be considered as the leaving office time. If a user has fewer

than two inputs in one day, then the user has invalid

attendance (considered as not coming to the office). To get the

arrival and departure attendance, users can call the

GetArrivalTime() and GetLeaveTime() functions on

the ASC.

III. EXPERIMENTAL RESULTS

Absenin can be connected to any blockchain (whether

permissioned or permissionless) as long as they are compatible

with the Ethereum Virtual Machine (EVM) [12]. For this

purpose, we utilize hardhat [13] as a blockchain emulator and

development tools. Smart contract code is written using

Solidity, while applications for admin, user, and attendance

machines are implemented using Typescript. After the

prototype was built, we analyzed the performance of our

system in several aspects, including processing delay and gas

usage. We tested our system using a computer with a

specification of Intel Core i5-8250U CPU @ 1.60 GHz and SK

Hynix DDR4 RAM @ 2400 MHz. During the evaluation

process, we only used 1 CPU core and 8 GB of RAM. Figure

3 shows the user interface for our attendance machine

prototype.

141

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

Figure 3. The User Interface in the Attendance Machine Showing the Attendance Code (Left) and the Merkle Root (Right) to
be Processed by the Mobile Apps in Admin And Users.

Table 2. Processing Delay (in Milliseconds) for Methods in ASC When Processing Diverse Number of Attendance Code

Method
Number of Attendance Code

28800 43200 86400

GenerateCode() 264.23 371.92 710.89

MerkleRoot() 70.60 1,141.46 2,070.12

MerkleProof() 178,510.70 464,313.19 2,114,973.89

SubmitRoot() 16.63 12.33 24.71

SubmitAttendance() 983,767.97 1,221,684.77 2,298,884.54

A. Processing Delay

We first analyzed Absenin to identify potential

bottlenecks in our system. Suppose if one attendance machine

displays 1 code every 3 seconds, then in one day the machine

needs to prepare 28800 attendance codes. If the code display

duration is shortened to 2 or 1 second, then the machine would

need 43200 and 86400 attendance codes, respectively. For this

reason, we conducted a simulation evaluation to process

28800, 43200, and 86400 attendance codes to cover three

different scenarios of code display duration. Specifically, we

utilize the Node JS Performance module to benchmark the

processing delay from core methods in Absenin as seen in

Table 2.

Based on Table 2, we can conclude that the Merkle Proof

creation process is the major bottleneck in the system. In this

process, the attendance machine has to create proofs for all the

attendance codes that have been generated. The more

attendance codes that need to be generated, the greater the

processing delay of the system. However, the good news is

that the process of generating attendance codes, Merkle Root,

and Merkle Proof only needs to be done once per day.

Therefore, this process can be done outside of office hours (for

example, early in the morning) so it will not disrupt the

operation of the attendance machine during work hours.

Our analysis indicates that the SubmitAttendance()

process takes 16-38 minutes. This number may seem very

large, but it is important to note that this delay is for processing

the total 28800, 43200, or 86400 codes. In the operational

process of the attendance machine, one user only needs to enter

the code twice (for check-in and check-out), and we also limit

one code to be processed every 3, 2, or 1 second. Therefore,

this large delay is not considered as a bottleneck. The process

of recording one attendance code through the

SubmitAttendance() function only takes about 26-34

milliseconds.

B. Gas Consumption

Every process that changes the state of the blockchain

network in the EVM will be subject to gas calculation [14]

and will be forced to stop and return to the original state if the

process is run out of gas or exceeds the upper limit of gas

consumption. Currently, the maximum limit is 30 million gas

per block. The limit is enforced to avoid the possibility of an

endless loop, where a blockchain node run processes

continuously and wastes all their resources. Therefore, a good

and efficient blockchain system is one that uses gas as small

as possible and stays far below the maximum limit. Table 3

shows the gas consumption of ASC functions, which is

recorded using the hardhat-gas-reporter module.

142

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

Table 3. Gas Usage in ASC

Method Gas %Limit

RegisterUser() 23,683 0.08

RegisterMachine() 26,711 0.09

RecordRoot() 29,811 0.10

RecordAttendance() 76,449 0.25

Based on our evaluation results, the registration process

for users, attendance machines, and the submission process

for Merkle Roots require relatively small amounts of gas.

These processes also only need to be done once, so they do

not burden the system too much. However, the attendance

process performed by users through RecordAttendance()

is a different case. Each user needs to call this function at least

twice a day. Therefore, this function may result in significant

gas usage and become the bottleneck in Absenin.

With a gas consumption of 76,499, we can only include

about 392 attendance codes per block. If a block is created

every 3 seconds, then the system can only record 130

attendance codes per second. This value is still sufficient for

recording attendance from offices with thousands, tens of

thousands, or even hundreds of thousands of employees. If the

performance is still considered insufficient, we can reduce the

block creation period from 3 seconds to 1 second so that now

every second we can process 392 attendance codes.

It should be noted that we only display write methods in

Table 3, while read-only methods (e.g., GetArriveTime(),

GetLeaveTime()) are not displayed because they do not

require gas when executed in the EVM.

C. Weakness

In the last part of this section, we discuss several

weaknesses of Absenin that we have identified. We also

elaborate on suggestions and strategies to eliminate or

mitigate these weaknesses.

Long Queues: An attendance code can only be used for

every few seconds (one code per three seconds in our

example). In cases where many employees suddenly arrive at

the same time, there will be a queue. If 20 people arrive

simultaneously, then the last person to arrive must wait at least

one minute before they can take attendance.

There are two solutions for this case. First, we can reduce

the duration of the code display to two or one second to reduce

the waiting time. However, this requires the attendance

machine to generate more codes compared to a three-second

duration. In result, the machine needs more computing and

storage resources. Alternatively, we can also increase the

number of attendance machines at points where crowds may

occur to minimize queues. It should be noted that, depending

on the situation in the office, the occurrence of 20 people

arriving together may be considered a rare event. So, a little

bit of queues should be acceptable.

Attendance Codes Can Still Be Misused: Users can learn

how our attendance system works through trial and error. If

users find out that unused codes that have shown from the

attendance machine screen can still be used, then users can

memorize or record several attendance codes and then

distribute them to other users. This way, users can attend

remotely.

To address these issues, a near-field authentication process

should be used (for example, using Bluetooth Low Energy,

RFID), where the user's smartphone must be close enough to

the attendance machine during check-in for it to be considered

valid. However, this approach may result in a terrible user

experience because the authentication process is not

convenient. For example, Bluetooth connections are

susceptible to interferences, while RFID requires users to

bring additional devices (RFID tags) to work, aside from their

smartphones.

Admin Still Has to Configure Attendance Manually: In

our system, the admin must setup the attendance machine to

generate attendance codes and then manually add the Merkle

Root of the codes to the ASC. If the admin forgets to do this,

the attendance system cannot be used. The solution to this

issue is the admin can create and register multiple Merkle

Roots for future periods automatically through a scheduling

process.

Table 4. Feature Comparison of Absenin With Related

Works Regarding Attendance Method and Whether They

Have Blockchain (BC.), Offline Attendance Machine (Off.),

Real-Time System (RT.), Integrity (Int.), and Expiry Time /

Time Limit for Attendance Code (Exp.).

Ref.
Attendance

Method
BC. Off. R.T. Int. Exp.

[2] Bluetooth ✗ ✗ ✔ ✗ ✗

[7]

Haar

Cascade

Classifier
✗ ✗ ✔ ✗ ✗

[4]
Fingerprint,

Barcode
✗ ✗ ✗ ✗ ✗

[5] QR Code ✗ ✗ ✗ ✗ ✗

[3] RFID ✗ ✗ ✔ ✗ ✔

[6]
QR Code,

LBS
✗ ✗ ✔ ✗ ✗

[15] Barcode ✔ ✗ ✔ ✔ ✗

[1]
Attendance

Form
✔ ✗ ✔ ✔ ✗

Ours
Attendance

Code
✔ ✔ ✔ ✔ ✔

IV. RELATED WORK

In this chapter, we present previous studies on the topic of

"information systems for tracking user attendance in an

organization." It should be noted that we only filter papers that

have implementation in Indonesia, by only including papers

written in Bahasa Indonesia for comparison. Table 4

summarize the comparison of our system with related works.

P. R. Setiawan [2] created an Android-based attendance

system. The author developed this application to address the

common problem of "signing in an absent person" among

students to meet the minimum attendance requirement.

143

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

Munawir et al. [7] developed an attendance system utilizing

face detection with the Haar Cascade Classifier. The system is

capable of detecting one face or multiple faces simultaneously.

Handayani et al. [4] analyzed the attendance system of PT.

Ambassador Garmindo Sukoharjo to identify the strengths and

weaknesses of the system, as well as to identify zero-days

problems.

Asiking et al. [5] developed an attendance system using

Quick Response Code technology equipped with Secure Hash

Algorithm (SHA) and BCRYPT algorithm to secure the

attendance process performed through an Android

smartphone. Zakaria et al. [3] utilized Radio Frequency

Identification (RFID) for student attendance. Data from RFID

will be stored in a MySQL database for easy and centralized

attendance data log recording. Sikumbang et al. [6] used

Location Based Service (LBS) to take attendance log at the

Bandung City Statistics Center when performing official duties

outside the office. The user's location will be monitored

through an Android application as proofs of attending office.

For blockchain-based attendance systems, Hidayat et al.

[15] developed an online attendance system based on granted

data validity and barcode scanning. The authors used

blockchain to secure attendance data stored in the system.

Wijaya et al. [1] also used blockchain to secure the attendance

system at the Lembaga Pengembangan Komputerisasi Mandiri

berbasis Virtual (VM LePKom) Universitas Gunadarma. The

authors revamped the original system, which still used

traditional databases, to use blockchain so that all attendance

data could be securely stored.

The majority of attendance systems mentioned previously

(cf. Table 4) already use a real-time system in which users can

instantly check whether their attendance process was

successful or not. However, previous works require the

attendance machine to be connected to the Internet for them to

provide real-time feedback. In contrast, our attendance

machine is not required to be connected to the Internet at all.

Furthermore, most attendance systems do not specify whether

their attendance process has a time limit or not, so there is a

possibility that attendance codes (such as QR codes, barcodes,

fingerprints, Bluetooth signals) can be used multiple times and

abused by users. Additionally, among all the papers discussed,

only two of them utilize blockchain. This indicates that the

discussion on attendance systems in Indonesia is still mostly

focused on conventional methods using a database system

(non-blockchain). Therefore, this paper can contribute as an

example of implementing blockchain in the field of attendance

systems to promote the use of blockchain in Indonesia.

V. CONCLUSION

In this paper, we have proposed Absenin, an office

attendance system that utilizes blockchain technology. Our

system offers novel features such as an attendance machine

that does not require an internet connection but still provides a

real-time attendance process for users. Additionally, the use of

blockchain in our system provides better security and integrity

properties compared to traditional attendance systems that

utilize conventional databases. Based on the evaluation results,

we conclude that the system is feasible and can run correctly

as initially designed. Processing delay is also relatively small,

and the average gas usage is below the limit. The major

bottleneck in our system is the generation of Merkle Proof and

the submission of attendance code, which should become the

point of interest during deployment.

For future work, we plan to implement the system on

commercial hardware to test the performance of using small-

capacity machines such as Raspberry Pi 3 as attendance

machines. Additionally, attendance codes can be transformed

into QR codes to simplify the attendance process. Users only

need to scan the QR code displayed on the attendance machine.

In a broader use case, our proposal can also be used to log

anything from the physical world to the digital world. For

example, in the supply chain, Absenin can be tweaked to log

one of the child processes in the entire supply chain area. This

way, we can have a credible log and know how much process

is needed from child A to child B, and so on.

REFERENCES

 [1] I. Wijaya, E. Haryatmi, and A. B. Kurniawan,

‘Implementasi Teknologi Blockchain pada Sistem

Presensi Staff VM LePKom Berbasis Web’, Jurnal

Nasional Informatika dan Teknologi Jaringan, vol. 5,

no. 1, pp. 162–169, 2020.

[2] P. R. Setiawan, ‘Aplikasi Absensi Online Berbasis

Android’, IT Journal Research and Development, vol. 5,

no. 1, pp. 63–71, 2020.

[3] A. Zakaria and A. Prihantara, ‘Pemanfaatan Radio

Frequency Identification Mifare RC522 dan Arduino

Sebagai Media Validasi Kehadiran Mahasiswa’, Jurnal

Infotekmesin, vol. 11, no. 01, 2020.

[4] S. Handayani, P. Ninghardjanti, and A. Subarno,

‘Pengelolaan Sistem Informasi Presensi Di Pt

Ambassador Garmindo Sukoharjo’, JIKAP (Jurnal

Informasi Dan Komunikasi Administrasi Perkantoran),

vol. 4, no. 4, pp. 37–52.

[5] A. Asiking, I. S. K. Idris, and Others, ‘Quick Response

Code Absensi Guru Menggunakan Secure Hashing

Algorithm (SHA)’, Jurnal Tecnoscienza, vol. 6, no. 2,

pp. 332–346, 2022.

[6] M. A. R. Sikumbang, R. Habibi, and S. F. Pane, ‘Sistem

informasi absensi pegawai menggunakan metode RAD

dan metode LBS pada koordinat absensi’, Jurnal Media

Informatika Budidarma, vol. 4, no. 1, pp. 59–64, 2020.

[7] M. Munawir, L. Fitria, and M. Hermansyah,

‘Implementasi Face Recognition pada Absensi

Kehadiran Mahasiswa Menggunakan Metode Haar

Cascade Classifier’, InfoTekJar: Jurnal Nasional

Informatika dan Teknologi Jaringan, vol. 4, no. 2, pp.

314–320, 2020.

[8] S. Nakamoto, ‘Bitcoin: A peer-to-peer electronic cash

system’, Decentralized business review, 2008.

144

TEKNIKA, Volume 13(1), Maret 2024, pp. 137-144

ISSN 2549-8037, EISSN 2549-8045

Oktian, Y.E.: Design and Implementation of Blockchain-Based Office Attendance System

DOI: 10.34148/teknika.v13i1.775

[9] A. M. Antonopoulos and G. Wood, Mastering

ethereum: building smart contracts and dapps. O’reilly

Media, 2018.

[10] K. S. Garewal and K. S. Garewal, ‘Merkle trees’,

Practical Blockchains and Cryptocurrencies: Speed Up

Your Application Development Process and Develop

Distributed Applications with Confidence, pp. 137–148,

2020.

[11] Y. Manevich and A. Akavia, ‘Cross chain atomic swaps

in the absence of time via attribute verifiable timed

commitments’, in 2022 IEEE 7th European Symposium

on Security and Privacy (EuroS&P), 2022, pp. 606–625.

[12] G. Wood and Others, ‘Ethereum: A secure decentralised

generalised transaction ledger’, Ethereum project yellow

paper, vol. 151, no. 2014, pp. 1–32, 2014.

[13] S. M. Jain, ‘Hardhat’, in A Brief Introduction to Web3:

Decentralized Web Fundamentals for App

Development, Springer, 2022, pp. 167–179.

[14] M. Lepcha. Gas Fee (Ethereum). Techopedia. [Online]

Available: https://www.techopedia.com/definition/gas-

fee-ethereum

[15] M. M. Hidayat, A. A. Mubarrok, B. P. B. Utomo, and

M. I. Zacharia, ‘Perancangan Sistem Presensi Online

Berbasis Granted Validitas Data’, Jurnal Informatika

dan Teknologi (INTECH), vol. 4, no. 1, pp. 23–27, 2023.

