
164

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

DOI: 10.34148/teknika.v13i2.799

Subari, et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

The Implementation of A* Algorithm for Developing Non-Player

Characteristics of Enemy in A Video Game Adopted from

Javanese Folklore "Golden Orange"

Subari1, Nira Radita2*, Bimo Prakoso3

1,2,3Informatics, Sekolah Tinggi Informatika & Komputer Indonesia, Malang, East Java, Indonesia

Email: 1subari@stiki.ac.id, 2*niraradita@stiki.ac.id, 3bimo.prakoso@gmail.com

 (Received: 23 Apr 2024, revised: 24 May 2024, accepted: 27 May 2024)

Abstract

Video games are a means of entertainment for everyone, from children to adults. The genre of games now is also very diverse,

ranging from adventure, puzzles to storytelling, and even many folk stories have been made into video games by several

developers in Indonesia. Starting from folk tales with horror themes such as kuntilanak, legends such as cucumber mas, to folk

tales that rarely sound like golden oranges. The folklore video game of buah jeruk emas is a video game that tells of a king who

gets a whisper from the gods to get golden oranges. The king then held a competition to get the golden orange fruit. The player

must be able to take the golden orange fruit from the enemy in the form of a Non Playable Character (NPC) who will chase the

player. In making NPCs, algorithms are used to help play video games. Therefore, the author wants to apply the A * algorithm

in the game of golden oranges so that npc can catch up to players according to the planned system. The main method used is A

* and then the addition of the FSM method for other methods. The golden orange fruit is a video game using the A * algorithm

and the FSM method after testing it can be concluded that it is enough to make the game run. With the results according to the

planned system.

Keywords: A*, FSM, Video Game, golden orange fruit.

I. INTRODUCTION

The golden orange fruit folklore game is a video game that

tells a king who gets a whisper from the God to get golden

oranges. The king then held a contest to get the golden oranges

[1]. The player must be able to take the golden orange from the

enemy in the form of a Non-Playable Character (NPC) who

will chase the player.

In making NPCs, algorithms are used to help in running

video games. These algorithms are very diverse, starting from

the simplest algorithms to algorithms that use Artificial

Intelligence (AI) which means that artificial intelligence is

created and then inserted into a system so that it can behave

like humans [2] [3]. The examples of algorithms used are A*

(A-star) and Finite State Machine (FSM) [4].

Finite state machine (FSM) is a control system design

methodology that describes the behavior or working principle

of the system using the following three things: state, event and

action. This state transition is generally also accompanied by

actions performed by the system when responding to inputs

that occur. The taken actions can be simple actions or involve

a series of relatively complex processes [5]. FSM in this golden

orange game is used for decision making on enemy NPC

characters driven by artificial intelligence. This method aims

at supporting NPC characters so that the movements and

actions of the enemy can run without user intervention from

the game [6].

In addition to the FSM method, this study also uses the A*

method for the pathfinding algorithm. A* itself is one of the

most popular methods and pathfinding algorithms that have the

best performance. The A* algorithm checks the feasibility of

the costs required to reach a node from another node. This

algorithm is a Best First Search algorithm that combines

Uniform Cost Search and Greedy Best-First Search [7].

The FSM and A* algorithms have previously been applied

in a study entitled "An intelligent agent of finite state machine

in the educational game "Flora the Explorer" but their usage is

only for chasing players [8], so this research is expected to

improve the use of the Finite State Machine algorithm. (FSM)

and the A* algorithm that can make the action and rate of

enemy NPCs more diverse and efficient [9] [10].

mailto:1bimo.prakoso@gmail.com
mailto:2*niraradita@stiki.ac.id
mailto:3niraradita@stiki.ac.id

165

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari, et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

II. RESEARCH METHODS

The 3D games that contain folklore in Indonesia are less

than platformer games with 2D dimensions. Many developers

prefer to develop 2D games rather than 3D. This is due to

easier development and application of algorithms than 3D

games. This causes the actions carried out by enemy NPCs

cannot be varied and becomes more monotonous. In addition,

in the games like Pacman that apply a pathfinding algorithm,

sometimes its’ enemy NPCs prefer a longer path to pursue the

player's character. This can reduce the efficiency of the NPC

to catch up with the enemy. The limitations in this study

include the use of the A* algorithm to find routes to players,

the use of the FSM method for state patrol, chase, and attack,

and the game has only 1 map.

NPCs are created by applying the Finite State Machine

(FSM) algorithm so that they can react differently based on

player treatment. The A* algorithm is also used to make NPCs

more efficient in finding player locations. The use of these two

algorithms aims to prove the efficiency of the FSM and A*

algorithms [11].

The A* algorithm is used to find the shortest route to the

player and will always chase the player. In addition to A*, the

FSM algorithm will also be used for actions such as attacking

and destroying obstacles against the players. The steps of

finding the shortest route using the A* algorithm is started

from entering the initial node into the open list then checking

the nodes adjacent to the initial node and finally adding all

these nodes to the open list [12].

The features users have access to start the game to play that

the users can win or lose, Figure 1 shows the treatment process

for NPCs.

Figure 1. Flow of NPCs in the Game

The flowchart in Figure 2 describes if an NPC encounters

an obstacle while chasing a player. NPCs will choose the

action between destroying or looking for another route.

Figure 2. The process when enemy NPCs attack players

The flowchart in Figure 3 describes if an NPC encounters

an obstacle while chasing a player. NPCs will choose the

action between destroying or looking for another route.

Figure 3. NPC Action Meets Barrier

Figure 4 shows a picture while NPCs is chasing players

and while they are chasing players, they drop a block of wood

as a barrier on the right and left is a forest background.

Figure 4. NPC Environment Chasing Players

Figure 5 shows the controls in the golden orange fruit

game to manage the player in the form of a keyboard and

mouse. The keyboard is useful for moving players and

pausing the game. The mouse is useful for moving the camera

by using a left click to interact with objects [13].

166

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

Figure 5. Control Scheme in the Golden Orange Fruit Game

The A* algorithm on the enemy will run when the game

starts. The enemy will follow the path determined by the A*

algorithm to reach the player. If the enemy reaches the player's

position, the enemy will launch an attack.

III. RESULTS AND DISCUSSION

The objects created in this algorithm testing experiment are

forest (obstacles), players, enemies, and areas. The first object

to be created in Unity is the area object, shown in Figure 6

(scene, 3D Object and Plane).

Figure 6. Area Creation

Figure 7 shows the plane position settings at (0, 0, 0) with

the desired size.

Figure 7. Setting the Position of the Area

Figure 8 shows the creation of obstacles using a cube

object and the creation of obstacles from multiple cubes on a

new layer.

Figure 8. Obstacle Object Layer

For the creation of player and enemy objects, as a dummy,

the authors use a capsule object. The authors use 2 capsule

objects namely Enemy and Player, in which the 2 objects are

placed opposite each other. The placement of enemy and

player objects can be seen in Figure 9.

Figure 9. Creation of Enemy and Player Objects

In Figure 10, for the object to be installed, the material that

has been made is given a color.

Figure 10. Adding Color to the Object

After the object is created, then the code is implemented

into the object so that the A* algorithm can run [14]. After

that it was created an empty object namely "Pathfinding

Manager". Then it is added the Astar_manager, Pathrequest,

and Pointgrid code files into the Pathfinding Manager object.

In the Point Grid section, the World Size in Figure 11 is

set with the size of the ground object x and z times 10. So, if

x and z are from ground objects 3.5 and 2, then fill the World

Size with 35 and 20. Then arrange the Un Walkable Layer

with obstacle layer that has been set previously.

167

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari, et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

Figure 11. Setting the Grid

The next step is selecting the enemy object by entering the

Enemy code file in the settings section, and selecting the

player object as the target as shown in Figure 12.

Figure 12. Enemy Code Settings on Enemy Objects

Figure 13 is the step of entering the Move Player code file

on the player object to move the player object, and setting the

speed on the move speed variable.

Figure 13. Code File for Moving Player Object

This function is to calculate the border map and create a

grid based on the size of the map or ground created. This

function will calculate the map boundaries and calculate the

grid which is used to calculate neighbors between grids. It

provides the Calculate World Map Borders function to

measure the map boundaries, and the Generate grid function

to create a grid used to place and count neighbors as shown in

Figure 14.

Function used to update enemy and player locations when

the game has started. Since the condition of the player is

always moving, the nodes will always change and the enemy

will move related to the node.

Figure 14. Location of Players and Enemies

In Figure 15, the position of the player and the enemy will

always be updated when the player moves and the enemy

chases. These positions will always change related to the

nodes that have been calculated. When the player moves, the

enemy will ask for a new path according to the calculated node

and will update the taken path to get to the player's position.

The function is used to determine the starting node of the

enemy's position and the destination node of the player's

position. In addition, this code also contains the calculation of

the A* algorithm. In Figure 15, the starting and destination

nodes are determined on a map that already has grids. The

starting node will look for a route to reach the destination

node. In this game, agent Node is used as a variable for enemy

objects, and target Node is a variable for player objects. These

two variables will be calculated to determine the path that

connects the 2 nodes.

Figure 15. Starting Node and Destination Node

The function is used to store the checked nodes into the

open list. After getting a new node, the old node will be

removed from the open list and added to the closed list. This

function applies heap optimization for route search

optimization.

The function is used to add a path leading to the player's

location. Enemies will follow these paths to chase the player.

This path is a line and a point. In Figure 16, there is a black

line and some dots. These lines are the paths that the enemy

will follow to reach the player's position. This function is

useful for drawing paths on nodes that have been found. This

path consists of lines and points, where the line functions as a

path and the point functions as a path displacement [15] [16].

168

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

Figure 16. Path between Player and Enemy

This function is useful for the enemy to follow the existing

path to reach the player's position. In Figure 17, the two

enemies are seen following the existing path to reach the

enemy position. The path for each enemy is different since the

position of the enemy is different each other. The value of the

distance between the enemy and the player will be entered into

the Vector3 array, this array will later function to determine

where the path will be placed based on the nodes that have

been calculated by the A* algorithm.

Figure 17. Two Enemies Approaching the Player

The A* test is carried out to find out the prices of F, G, and

H according to Table 1, as well as the algorithm's way of

finding routes. This process is carried out by taking the

coordinates of the player and the enemy.

Player Position Coordinates:

X: 12.3

Y: 0.7

Z: -9.9

Enemy Position Coordinates:

X: 1.5

Y: 0.7

Z: 8

Table 1. Trial Results of the A* Algorithm

Steps Score
Coordinate

Start Node

Coordinate

End Node

1

G : 7.6

H : 6.6

F : 14.2

(1.5, 0.4, 7.5) (12.3, 0.7, -9.9)

2

G : 7.2

H : 5.9
F : 13.1

(1.2, 0.4, 7.1) (12.3, 0.7, -9.9)

3

G : 6.5

H : 4.8

F : 11.3

(0.7, 0.4, 6.5) (12.3, 0.7, -9.9)

4

G : 5.8

H : 3.7

F : 9.5

(0.3, 0.4, 5.8) (12.3, 0.7, -9.9)

Steps Score
Coordinate

Start Node

Coordinate

End Node

5

G : 4.8

H : 1.9

F : 6.7

(-0.5, 0.2, 4.8) (12.3, 0.7, -9.9)

6
G : 3.6
H : 0.7

F: 4.3

(-0.5, 0.2, 3.6) (12.3, 0.7, -9.9)

7
G : 2.6
H : 0.9

F : 3.5

(-1.5, 0.2, 3) (12.3, 0.7, -9.9)

8
G : 0.7
H : 2.3

F : 3

(-2.5, 0.2, 2.6) (12.3, 0.7, -9.9)

9

G : -2.3

H : 3.3
F : 1

(-3.5, 0.2, 2.6) (12.3, 0.7, -9.9)

10

G : -3.5

H : 2.5

F : -1

(-3.5, 0.2, -0.4) (12.3, 0.7, -9.9)

11

G : -2.9

H : 6.3

F : 3.4

(-2.5, 0.2, -1.4) (12.3, 0.7, -9.9)

12

G : -2.7

H : 6.2

F : 3.5

(-1.5, 0.1, -2.3) (12.3, 0.7, -9.9)

13
G : -3.2
H : 6.1

F : 2.9

(-0.5, 0.1, -3.2) (12.3, 0.7, -9.9)

14
G : -4.1
H : 6.1

F : 2

(0.5, 0.1, -4.2) (12.3, 0.7, -9.9)

15

G : -5

H : 6
F : 1

(1.7, 0.1, -5.3) (12.3, 0.7, -9.9)

16

G : -1.8

H : 5.9
F : 4.1

(2.7, 0.1, -6.2) (12.3, 0.7, -9.9)

17

G : -5.7

H : 5.2
F : -0.5

(4.5, 0.1, -7.3) (12.3, 0.7, -9.9)

18

G : -4.7

H : 4.1
F : -0.6

(5.6, 0.1, -7.3) (12.3, 0.7, -9.9)

19

G : -3.3

H : 3.2

F : -0.1

(6.5, 0.1, -7.3) (12.3, 0.7, -9.9)

20

G : 1.7

H : 2.2

F : 3.9

(7.5, 0.1, -7.3) (12.3, 0.7, -9.9)

21
G : 0
H : 2.4

F : -2.4

(8.4, 0.2, -8.4) (12.3, 0.7, -9.9)

22
G : 2.7
H : 2

F : 4.7

(9.6, 0.2, -9.2) (12.3, 0.7, -9.9)

23

G : 5

H : 1.1

F :6.1

(10.5, 0.2, -9.2) (12.3, 0.7, -9.9)

24

G : 6.6

H : 0.5
F : 7.1

(11.3, 0.2, -9.4) (12.3, 0.7, -9.9)

25

G : 7.1

H : 0.1
F : 7.2

(12.2, 0.2, -9.9) (12.3, 0.7, -9.9)

This object is basically the same as the object that was

created in the application of the A* algorithm, the difference

lies in the addition of a waypoint object. This object will be

used as a point for enemy characters in state patrol. The

Enemy

169

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari, et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

waypoints are made by creating 4 sphere objects placed in

several places, these objects will later be used as enemy patrol

points.

After giving the waypoint object, the next section is

adding the creation of the animator for the state patrol enemy

character which can be seen in Figure 18. This animator

functions to create a different state for the enemy.

Figure 18. Creating a State Patrol

At each state patrol creation, a behavior will be added to

adjust the enemy's behavior while in the patrol state. The

Awake() method in the state patrol coding serves to define a

waypoint object with a waypoint tag that has been created on

the sphere object. The OnStateEnter method will be executed

when the state patrol is called then the enemy will go to the

waypoint 0 position. This will also happen when the enemy

loses distance while chasing the player, then the enemy will

return to the patrol state and go to waypoint 0. The

OnStateUpdate method will run continuously while the

enemy is in patrol state and run according to the waypoint

which has been set. In this method there are some codes to add

the order of the enemy waypoints. If the enemy has reached

waypoint 0, the waypoint value automatically becomes 1 and

the enemy will walk to waypoint 1, and so on until it returns

to the value 0. The treatment that has been described in

OnStateUpdate is part of the role in the implementation of this

animation controller. It can be seen in Figure 19.

Figure 19. Animation Controller Implementation

After implementing state patrol on the enemy, a state

chase is created so that the enemy the will chase the player is

in a certain range. It is necessary to create a new script to make

it easier to adjust the enemy's speed in chasing, turning and

accuracy. In this script, the code will be added so that it can

control the enemy objects and players in terms of speed,

rotation speed and accuracy of the enemy itself.

In the script there are several things mentioned, such as the

creation of Game Objects that will later function to define

enemy and player objects. As for speed, rot speed and

accuracy, the function is to regulate this script without having

to change from another script.

In the OnStateEnter method, there are NPCs and

opponents. These two Game Objects will always be called

when they are in state. The opponent will take a component

from the EnemyAI script functioning to define enemy objects.

Next, a new state called chase is created in the animator. This

state will later contain the code so that the enemy chases the

player. After creating a state chase, it is necessary to have a

transition between state patrol and chase as shown in Figure

20. This transition is useful when the player is within a certain

distance from the enemy, the enemy in the patrol state will

move to the chase state.

Next, a parameter is created as a determinant when the

enemy will chase the player. In this project, the enemy is made

to chase the player if the parameter value is less than 20. If it

is more than 20, the enemy will return to the patrol state. It is

also required is a parameter namely distance of type float and

filled with a value of 100 as the default value which will

decrease if the player gets closer.

To set the condition when the enemy will chase the player,

it needs to be set with a distance condition less than 20. This

works if the enemy to player distance is less than 20, then the

enemy will enter the chase state. If the enemy's distance

condition on the player is greater than 20, then the enemy will

return to the patrol state. To make the transition from chase to

patrol, the conditions must be set to more than 20.

The attack state in Figure 20 is used for enemies that will

attack players within a predetermined range, also transitions

from chase to attack and vice versa. This transition is useful

for changing from the chase state to the attack state if a certain

distance has been met, and vice versa. The transition sets the

value of the distance parameter for each transition, from chase

to attack if it is less than 2 and vice versa. This means that if

the distance between the enemy and the player is less than 2,

the enemy will move to the attack state and attack the player.

However, if the distance is more than 3, then the enemy will

return to chasing the player.

Figure 20. Adding Script Behavior to the Attack State

This test aims to test whether the game has been running

in accordance with the system design that has been arranged.

In gameplay testing, there are several stages of testing are

carried out including the early part and while the game is

running.

At the beginning of the game as shown in Figure 21 which

presents several main menu options.

170

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

Figure 21. Main Menu Page Display

The game is as shown in Figure 22, the top view shows 3

enemies, 2 enemies are using the A* algorithm in path

searching, and 1 enemy is using FSM to adjust the enemy's

behavior.

Figure 22. Top View

The camera setting in Figure 23 is for a rear view of the

enemy showing the enemy's rear while chasing players or

while on patrol.

Figure 23. Enemy's Rear View

Enemy route display consists of 3 enemy routes in which

2 enemies use A* for route search, while 1 enemy uses FSM

for behavior, as shown in Figure 24.

Figure 24. Display of Route A* and FSM

The route taken by this enemy will be different, the enemy

A* will automatically chase the player because the route has

been determined when the game is running with the A*

algorithm calculation, while for FSM enemies will follow the

patrol route. If the player is within range, the enemy will chase

the player, as shown in Figure 25.

Figure 25. Display of the Enemy Attacking the Player

Figure 26 shows when the player is within a certain range,

the enemy will attack the player. In the A* and FSM methods,

this method is different. In A*, enemies see if the player is

within range by detecting the player's collider. If the enemy

hits the collider, the enemy will stop chasing and switching to

attack mode. For FSM, if the range of the enemy and player is

less than 5 then the enemy changes from state chase to chase

attack. This functional testing stage aims to display the results

that have been carried out, where the tests include A* testing

and FSM testing.

This section is the results of testing against 2 enemies

using the A* algorithm to find the player's route when

approaching the player.

Figure 26. Route Enemy to Player using A*

171

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari, et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

In Figure 27, when the game starts, the enemy will

immediately have a route that has previously been calculated

by the A* algorithm to determine the closest route to reach the

player. This route is a black line. The route will always change

according to the player's position while moving. Enemies will

always follow this route to approach the player's position.

Figure 27. Enemy Attacks Players

In Figure 28, if the enemy is approaching the player's

position, the enemy will detect the player's collider object, if

it collides with the collider, the enemy will stop and attack the

player.

Figure 28. Path 1 for Enemy and Time to Find Route Path 1

In Figure 29, the authors make an example of 1 path for

enemy A*, the time allocation to find a path to the player is 2

ms (Miliseconds). The authors make the different paths to see

how long it takes to find a route as in line 1. The time

allocation to find a route on line 2 is 1 ms.

Figure 29. Path 2 for Enemy and Time to Find Route Path 2

Figure 30. Path 3 for the Enemy and The Time of Finding

the Route of Path 3 When the Game Starts

In Figure 30, the authors make another path to calculate

how long it will take to find a route to the player. In line 3 it

takes the same time allocation as line 1, which is 2 ms.

Table 2. Track Search Time Table
No Route Time Allocation

1 Route 1 2 ms

2 Route 2 1 ms
3 Route 3 2 ms

In Table 2, the test results of checking the time needed by

the enemy to find a path to the player are very good in which

the average time required is less than 3 ms, this is in

accordance with the purpose of this study.

Table 3. A* Testing Table
No Condition Action Description

1 Game starts The route appears and

the enemy follows the
route

Matched

2 Players change

positions

The route changes and

the enemy follows the
new route

Matched

3 Enemy is close to

players

Enemy checks collider

and attacks players

Matched

4 Enemy meets
obstacles

Enemy avoids obstacles Matched

5 Enemy doesn't hit the

player collider

Enemy is still chasing

following the route

Matched

6 Appears the time it
takes to find the route

Time appears on console Matched

In Table 3, the results of testing the A* algorithm applied

to the enemy run well and relate. In the next stage, the enemy

testing is carried out using the FSM method.

172

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

Figure 31. State Patrol on Enemy

In this FSM method, Figure 31 shows the enemy has 3

states, namely patrol, chase, and attack. Each state will change

if facing the certain condition. Enemy will follow the

waypoint (red circle) for the patrol route and always moves

from waypoint to waypoint as long as the player is not close.

The distance parameter is 12.3 in which the value is less than

20, then the enemy will transition to the chase state and chase

the enemy. It can be seen in Figure 32, the enemy is chasing

the player.

Figure 32. State Chase on Enemy

Figure 33. The Value of the Distance Parameter is More

Than 20

In Figure 33 the distance parameter is 69.4 in which if the

value is more than 20, then the enemy will transit to the patrol

state and return to the patrol route. Figure 34 shows the enemy

back into the patrol state.

Figure 34. Enemy Returns to Patrol State

The distance parameter is 3.7 in which if the value is less

than 5, then the enemy will transit to the attack state and attack

the player. Figure 35 shows the enemy performing an attack

animation.

Figure 35. State Attack on Enemy

Table 4. FSM Method Testing Table

No Condition Action Description

1 > 20 Patrolling Matched

2 < 20 Chasing Matched

3 < 5 Attacking Matched

4 > 5 Chasing Matched

Based on the results in Table 4, the parameter values

determined by the authors are the enemy transitions from one

state to another has run well. If the value of the distance

parameter is more than 20, then the enemy is still in the patrol

state. If the value is less than 20, then the enemy enters the

chase state. If the value of the distance parameter is less than

5, then the enemy enters the attack state. The implementation

phase showed that the model emphasized the importance of

providing immediate information to the player [17].

173

TEKNIKA, Volume 13(2), Juli 2024, pp. 164-174

ISSN 2549-8037, EISSN 2549-8045

Subari, et.al.: The Implementation of A* Algorithm for Developing Non-Player Characteristics

of Enemy in A Video Game Adopted from Javanese Folklore "Golden Orange"

DOI: 10.34148/teknika.v13i2.799

IV. CONCLUSION

The results of the enemy test using the A* algorithm went

well. By spending the time less than 3 ms in table 1, the use

of the A* algorithm is in accordance with the research

objectives. In table 2 the test of checking obstacles and

colliders is also appropriate.

The results of the enemy test using the FSM method went

well as expected. Table 3 shows that the enemy will enter

according to the state based on the value of the distance

parameter that has been set. With parameter values > 20, < 20,

> 5, and < 5, the enemy has successfully transitioned into the

preset state.

The authors hope that the future researchers can add

another characters for enemies applying the other algorithm

and add other states for enemies applying the FSM method.

REFERENCES

[1] Proyek Penelitian dan Pencatatan Kebudayaan Daerah,

Cerita Rakyat Daerah Jawa Timur, Jakarta:

Departemen Pendidikan dan Kebudayaan Proyek

Penerbitan Buku Bacaan dan Sastra Indonesia dan

Daerah, 1978.

[2] I. Ahmad and W. Widodo, "Penerapan Algoritma A

Star (A*) pada Game Petualangan Labirin Berbasis

Android," Khazanah Informatika (Jurnal Ilmu

Komputer dan Informatika), vol. 3, no. 2, pp. 57-63,

2017.

[3] A. Candra, M. A. Budiman and R. I. Pohan,

"Application of A-Star Algorithm on Pathfinding

Game," Journal of Physics: Conference Series, 5 th

International Conference on Computing and Applied

Informatics (ICCAI 2020), vol. 1898, no. 1, pp. 1-6,

2020.

[4] E. W. Hidayat, A. N. Rachman and M. F. Azim,

"Penerapan Finite State Machine pada Battle Game

Berbasis Augmented Reality," JEPIN (Jurnal Edukasi

dan Penelitian Informatika), vol. 5, no. 1, pp. 54-61,

2019.

[5] D. S. Hormansyah, A. . R. T. H. Ririd and D. T. Pribadi,

"Implementasi FSM (Finite State Machine) Pada Game

Perjuangan Pangeran Diponegoro," Jurnal Informatika

Polinemae, vol. 4, no. 4, pp. 290-297, 2018.

[6] F. Marzian and M. Qamal, "Game RPG “The Royal

Sword” Berbasis Desktop Dengan Menggunakan

Metode Finite State Machine (FSM)," SISFO: Jurnal

Sistem Informasi, vol. 1, no. 2, pp. 62-96, 2017.

[7] C. J. Young, A. Suryadibrata and R. Luhulima, "Review

of Various A* Pathfinding Implementations in Game

Autonomous Agent," IJNMT (International Journal of

New Media Technology), vol. VI, no. 01, pp. 43-49,

2019.

[8] A. F. Pukeng, R. R. Fauzi, L. R. Andrea, E. Yulsilviana

and S. Mallala, "An intelligent agent of finite state

machine in educational game “Flora the Explorer”,"

Journal of Physics: Conference Series, The 3rd

International Conference On Science, pp. 1-12, 2019.

[9] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah and

E. Gunawan, "A Systematic Literature Review of A*

Pathfinding," Procedia Computer Science, vol. 179, no.

11, pp. 507-514, 2021.

[10] J. Smołka, K. Miszta, M. S. Paszkowska and E.

Łukasik, "A* pathfinding algorithm modification for a

3D engine," MATEC Web of Conferences 252, 03007,

CMES’18, vol. 252, pp. 1-6, 2019.

[11] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma,

T. T. Walker, J. Li, D. Atzmon, L. Cohen, T. K. S.

Kumar, E. Boyarski and R. Roman, "Multi-Agent

Pathfinding: Definitions, Variants, and Benchmarks,"

Proceedings of the Twelfth International Symposium on

Combinatorial Search (SoCS 2019), pp. 151-158, 2019.

[12] M. Espinoza-Andaluz, J. Pagalo, J. Ávila and J.

Barzola-Monteses , "An Alternative Methodology to

Compute the Geometric Tortuosity in 2D Porous Media

Using the A-Star Pathfinding Algorithm," Journals

Computation, vol. 10, no. 4, pp. 1-17, 2022.

[13] H. F. Ramadhan, S. H. Sitorus and S. Rahmayuda,

"Game Edukasi Pengenalan Budaya Dan Wisata

Kalimantan Barat Menggunakan Metode Finite State

Machine Berbasis Android," Coding : Jurnal Komputer

dan Aplikasi, vol. 7, no. 1, pp. 108-119, 2019.

[14] S. H. Ligaputra, M. Anif, W. Gata and B. H. Prasetyo,

"Expert System for Identifying Damages of Panasonic

NS1000 PABX Devices with A* Pathfinding," JURNAL

RESTI(Rekayasa Sistem dan Teknologi Informasi), vol.

4, no. 3, pp. 558-568, 2020.

[15] D. Hermanto and S. Dermawan, "Penerapan Algoritma

A-Star Sebagai Pencari Rute Terpendek pada Robot

Hexapod," Jurnal Nasional Teknik Elektro, vol. 7, no.

2, pp. 122-129, 2018.

[16] S. Purnama, D. A. Megawaty and Y. Fernando,

"Penerapan Algoritma A Star Untuk Penentuan Jarak

Terdekat Wisata Kuliner Di Kota Bandar Lampung,"

Jurnal TEKNOINFO, vol. 12, no. 1, pp. 28-32, 2018.

[17] E. Handriyantini and S. Subari, "Development of a

Casual Game for Mobile Learning with the Kiili

Experiential Gaming Model," in 11th European

Conference on Games Based Learning (ECGBL), Graz,

Austria, 2017.

