Implementation of Machine Learning Model to Detect Sign Language Movement in SIBI Learning Media

Authors

  • Leni Fitriani Department of Computer Science, Institut Teknologi Garut, Garut, West Java, Indonesia
  • Dede Kurniadi Department of Computer Science, Institut Teknologi Garut, Garut, West Java, Indonesia
  • Ilham Syahidatul Rajab Department of Computer Science, Institut Teknologi Garut, Garut, West Java, Indonesia

DOI:

https://doi.org/10.34148/teknika.v14i1.1159

Keywords:

Azure, Design Sprint, Learning Media, Machine Learning, SIBI

Abstract

This research focuses on the development of a web-based Indonesian Sign Language System (SIBI) learning application with motion detection to improve the precision of sign language practice. Despite the government's introduction of SIBI as an official system, existing platforms lack tools to validate the accuracy of hand movements. Using the Design Sprint methodology—comprising Understand, Define, Sketch, Decide, Prototype, and Validate phases—this study employs Microsoft Azure Machine Learning to create a motion detection model capable of recognizing SIBI gestures. The application offers an interactive learning experience, allowing users to practice and receive real-time feedback on their accuracy. Initial trials demonstrated high prediction accuracy, achieving 99.82% on public datasets and 96.4% on private datasets. Beta testing revealed an 86% satisfaction rate among users, indicating the application’s effectiveness in enhancing the learning process. By providing accessibility through standard web browsers and incorporating advanced motion detection, this application contributes to inclusivity, facilitating broader public understanding and interest in learning sign language.

Downloads

Download data is not yet available.

References

[1] R. I. Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),” J. Inform. J. Pengemb. IT, vol. 3, no. 1, pp. 103–108, 2018.

[2] D. Yolanda, K. Gunadi, and E. Setyati, “Pengenalan alfabet bahasa isyarat tangan secara real-time dengan menggunakan metode Convolutional Neural Network dan Recurrent Neural Network,” J. Infra, vol. 8, no. 1, pp. 203–208, 2020.

[3] A. D. Saputra, J. Jayanta, and A. B. Pangaribuan, “Klasifikasi Alfabet Bahasa Isyarat Indonesia (Bisindo) Dengan Metode Template Matching Dan K-Nearest Neighbors (Knn),” in Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya, 2020, pp. 747–760. Accessed: Dec. 10, 2024. [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/563

[4] N. A. M. Amin and F. Pribadi, “Urgensi Bahasa Isyarat dalam Pendidikan Formal Sebagai Media Komunikasi dan Transmisi Informasi Penyandang Disabilitas Rungu dan Wicara,” J. Sos., vol. 77, 2022.

[5] L. Fitriani, D. Tresnawati, and M. B. Sukriyansah, “Image Classification On Garutan Batik Using Convolutional Neural Network with Data Augmentation,” JUITA J Inf., vol. 11, no. 1, p. 107, 2023.

[6] C. B. Takapente, S. R. Sompie, and V. C. Poekoel, “Implementasi Azure Cognitive Service Untuk Aplikasi Pengkategorian Foto,” J. Tek. Inform., vol. 13, no. 4, 2018, Accessed: Dec. 10, 2024. [Online]. Available: https://ejournal.unsrat.ac.id/index.php/informatika/article/view/28093

[7] Z. Nikolawatin, P. Setyosari, and S. Ulfa, “Pengembangan media tutorial bahasa isyarat untuk siswa tunarungu SLB BC Kepanjen,” Jinotep J. Inov. Dan Teknol. Pembelajaran Kaji. Dan Ris. Dalam Teknol. Pembelajaran, vol. 6, no. 1, pp. 15–22, 2019.

[8] A. B. Yunanda, F. Mandita, and A. P. Armin, “Pengenalan bahasa isyarat indonesia (bisindo) untuk karakter huruf dengan menggunakan microsoft kinect,” Fountain Inform. J., vol. 3, no. 2, pp. 41–45, 2018.

[9] S. Hidayatullah, “Rancang Bangun Penerjemah Bahasa Isyarat Menggunakan Pengolahan Citra Dengan Metode You Only Look Once (YOLO),” PhD Thesis, Politeknik Perkapalan Negeri Surabaya, 2021. Accessed: Dec. 10, 2024. [Online]. Available: http://repository.ppns.ac.id/4239/

[10] R. I. Borman, B. Priopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo),” in SNIA (Seminar Nasional Informatika dan Aplikasinya), 2019, p. D-1. Accessed: Dec. 10, 2024. [Online]. Available: https://snia.unjani.ac.id/web/index.php/snia/article/view/87

[11] A. Vaitkevičius, M. Taroza, T. Blažauskas, R. Damaševičius, R. Maskeliūnas, and M. Woźniak, “Recognition of American sign language gestures in a virtual reality using leap motion,” Appl. Sci., vol. 9, no. 3, p. 445, 2019.

[12] A. Ganpatye and S. Mane, “Motion Based Indian Sign Language Recognition using Deep Learning,” in 2022 2nd International Conference on Intelligent Technologies (CONIT), Jun. 2022, pp. 1–6. doi: 10.1109/CONIT55038.2022.9848275.

[13] M. Gil-Martín, M. Villa-Monedero, A. Pomirski, D. Sáez-Trigueros, and R. San-Segundo, “Sign Language Motion Generation from Sign Characteristics,” Sensors, vol. 23, no. 23, p. 9365, 2023.

[14] H. Luqman, “An efficient two-stream network for isolated sign language recognition using accumulative video motion,” IEEE Access, vol. 10, pp. 93785–93798, 2022.

[15] S. Sholichin, “Pengembangan dan pengujian aplikasi pemesanan makanan berbasis website menggunakan metode waterfall,” J. Comput. Sci. Eng. JCSE, vol. 2, no. 1, pp. 40–50, 2021.

[16] A. Rosano, “Pengujian Alpha dan Beta pada Pengembangan Sistem Internet Banking (Ibank) PT Bank Mega, Tbk,” REMIK Ris. Dan E-J. Manaj. Inform. Komput., vol. 3, no. 2, pp. 34–40, 2019.

[17] F. F. Dewi and S. L. Handayani, “Pengembangan media pembelajaran video animasi en-alter sources berbasis aplikasi powtoon materi sumber energi alternatif sekolah dasar,” J. Basicedu, vol. 5, no. 4, pp. 2530–2540, 2021.

Implementation of Machine Learning Model to Detect Sign Language Movement in SIBI Learning Media

Downloads

Published

2025-03-03

Issue

Section

Articles

How to Cite

Implementation of Machine Learning Model to Detect Sign Language Movement in SIBI Learning Media. (2025). Teknika, 14(1), 57-65. https://doi.org/10.34148/teknika.v14i1.1159