Pengenalan Aktivitas Manusia Dalam Ruangan Dengan Convolutional Neural Networks

Authors

  • Lina Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Tarumanagara, Jakarta Barat, DKI Jakarta
  • Michelle Augustine Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Tarumanagara, Jakarta Barat, DKI Jakarta
  • Richard Stephen Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Tarumanagara, Jakarta Barat, DKI Jakarta
  • Lorico Salim Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Tarumanagara, Jakarta Barat, DKI Jakarta

DOI:

https://doi.org/10.34148/teknika.v13i1.707

Keywords:

Pengenalan Aktivitas Manusia, Pengawasan, You Only Look Once, Convolutional Neural Network

Abstract

Kemajuan teknologi yang telah berkembang sangat pesat dapat membantu pekerjaan manusia dalam berbagai bidang. Salah satu kegiatan yang dapat diotomatisasi adalah aktivitas pengawasan kegiatan manusia dalam sebuah ruangan, misalnya bagi lansia ataupun orang cacat. Umumnya kegiatan pengawasan membutuhkan tenaga manusia untuk memantau kejadian dan aktivitas di lokasi tertentu secara live maupun direkam melalui kamera CCTV. Dengan perkembangan teknologi, seluruh kegiatan pengenalan terhadap aktivitas manusia dapat dilakukan secara otomatis. Sistem dapat mengenali aktivitas duduk, berdiri, belajar, mengangkat tangan, serta bertepuk tangan. Sistem dibuat dengan menggunakan metode Convolutional Neural Network (CNN). Eksperimen akan dilakukan dengan data uji yang berasal dari internet maupun rekaman video yang dilakukan oleh tim di lapangan. Hasil eksperimen menunjukkan bahwa sistem yang dikembangkan dapat mengenali aktivitas manusia dengan nilai akurasi sebesar 86,65% untuk data uji dari internet dan 96% untuk data uji dari IP camera yang terpasang pada sebuah lokasi. Selain itu, sistem juga dapat menghasilkan sebuah rangkuman catatan aktivitas terhadap seluruh kegiatan yang terjadi di dalam lokasi tersebut pada kisaran waktu yang ditetapkan.

Downloads

Download data is not yet available.

References

F. Ullah et al, "An image-based human physical activities recognition in an indoor environment," 2020 International Conference on Information and Communication Technology Convergence (ICTC), 2020, pp. 588-593, doi:10.1109/ictc49870.2020.9289314.

H. C. Nguyen et al., "Deep learning for human activity recognition on 3D human skeleton: Survey and Comparative Study," Sensors, 2023, vol. 23, no. 11, p. 5121, doi:10.3390/s23115121.

H. Najeh, C. Lohr and B. Leduc, "Dynamic segmentation of sensor events for real-time human activity recognition in a smart home context," Sensors, 2022, vol. 22, no. 14, p. 5458, doi:10.3390/s22145458.

N. Ahmed, J. I. Rafiq and M. R. Islam, "Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model," Sensors, 2020, vol. 20, no. 1, p. 317, doi:10.3390/s20010317.

I. A. Lawal and S. Bano, "Deep human activity recognition with localisation of wearable sensors," IOP IEEE Access, 2020, vol. 8, p. 155060—155070, doi:10.1109/access.2020.3017681.

P. Asghari, E. Soleimani and E. Nazerfard, "nline human activity recognition employing hierarchical hidden Markov models," Journal of Ambient Intelligence and Humanized Computing, 2020, vol. 11, no. 3, pp. 1141-1152, doi:10.1007/s12652-019-01380-5.

Q. Teng et al., "The Layer-Wise Training Convolutional Neural Networks Using Local Loss for Sensor-Based Human Activity Recognition," IEEE Sensors Journal, 2020, vol. 20, no. 13, pp. 7265-7274, doi:10.1109/jsen.2020.2978772.

P. Rojanavasu, A. Jitpattanakul and S. Mekruksavanich, "Comparative analysis of LSTM-based deep learning models for HAR using smartphone sensor," 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, 2021, pp. 269-272, doi:10.1109/ectidamtncon51128.2021.9425733.

K. Prastika and Lina, "Application of individual activity recognition in the room using CNN alexnet method," IOP Conference Series: Materials Science and Engineering, 2020, vol. 1007, no. 1, p. 012162, doi:10.1088/1757-899x/1007/1/012162.

Z. Hussain, Q. Z. Sheng and W. E. Zhang, "A review and categorization of techniques on device-free human activity recognition," Journal of Network and Computer Applications, 2020, vol. 102738, p. 167, doi:10.1016/j.jnca.2020.102738.

M. Atikuzzaman et al., "Human Activity Recognition System from Different Poses with CNN," 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI), 2020, pp. 1-5, doi:10.1109/sti50764.2020.9350508.

R. Mutegeki and D. S. Han, "A CNN-LSTM approach to human activity recognition," 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020, pp. 362-366, doi:10.1109/icaiic48513.2020.9065078.

R. D. Nurfita and G. Ariyanto, "Implementasi deep learning Berbasis Tensorflow Untuk Pengenalan Sidik Jari," Emitor: Jurnal Teknik Elektro, 2018, vol. 18, no. 1, pp. 22-27, doi:10.23917/emitor.v18i01.6236.

R. Yamashita et al., "Convolutional Neural Networks: An overview and application in Radiology," Insights into Imaging, 2021, vol. 9, no. 4, pp. 611-629, doi:10.1007/s13244-018-0639-9.

T. Kattenborn et al., "Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing," ISPRS Journal of Photogrammetry and Remote Sensing, 2021, vol. 173, pp. 24-49, doi:10.1016/j.isprsjprs.2020.12.010.

L. Alzubaidi et al., "Review of Deep Learning: Concepts, CNN Architectures, challenges, applications, Future Directions," Journal of Big Data, 2021, vol. 8, no. 7, pp. 1-74, doi:10.1186/s40537-021-00444-8.

E. S. Wahyuni and M. Hendri, "Smoke and fire detection base on Convolutional Neural Network," ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 2019, vol. 7, no. 3, p. 455, doi:10.26760/elkomika.v7i3.455.

A. Basavaraju et al., "A machine learning approach to road surface anomaly assessment using smartphone sensors," IEEE Sensors Journal, 2020, vol. 20, no. 5, pp. 2635-2647, doi:10.1109/jsen.2019.2952857.

N. Pathak, "Bridge Health Monitoring using CNN," 2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW), 2020, pp. 1-4, doi:10.1109/iccdw45521.2020.9318674.

Downloads

Published

2024-02-07

Issue

Section

Articles

How to Cite

Pengenalan Aktivitas Manusia Dalam Ruangan Dengan Convolutional Neural Networks. (2024). Teknika, 13(1), 58-64. https://doi.org/10.34148/teknika.v13i1.707