Optimalisasi Proses Data Warehouse Melalui Business Process Optimization (BPO) Untuk Meningkatkan Efisiensi Pengambilan Keputusan
DOI:
https://doi.org/10.34148/teknika.v13i3.928Keywords:
Data Warehouse, ETL, Business Process OptimizationAbstract
Proses pengambilan keputusan yang cepat dan tepat merupakan kebutuhan utama dalam lingkungan bisnis yang dinamis. Namun, banyak perusahaan freight forwarder menghadapi permasalahan dalam efisiensi pengambilan keputusan karena ketidaksempurnaan proses pengolahan data di dalam data warehouse. Untuk mengatasi permasalahan tersebut. Penelitian ini bertujuan untuk mengoptimalkan proses Data Warehouse (DWH) guna meningkatkan produktivitas dalam pengambilan keputusan di perusahaan freight forwarder di Indonesia. Dalam konteks lingkungan bisnis yang semakin kompleks dan dinamis, kebutuhan akan informasi yang tepat waktu dan akurat sangat penting untuk mendukung pengambilan keputusan yang efektif. DWH telah menjadi solusi populer untuk mengintegrasikan dan menganalisis data dari berbagai sumber guna mendukung proses pengambilan keputusan. Business Process Optimization (BPO) diterapkan untuk menganalisis dan merancang ulang proses bisnis yang terkait dengan pengolahan data, sehingga meningkatkan efisiensi dan akurasi pengolahan data dalam DWH. Dalam penelitian ini, digunakan model optimasi yang dirancang untuk memaksimalkan efisiensi proses ETL dan meningkatkan kinerja sistem Online Analytical Processing (OLAP) serta Online Transaction Processing (OLTP). Metode-metode ini diharapkan dapat meningkatkan kualitas dan kecepatan pengambilan keputusan, serta efisiensi operasional perusahaan freight forwarder. Hasil dari penelitian ini diharapkan dapat memberikan produktivitas dan daya saing bagi perusahaan di industri logistik.
Downloads
References
K. Kaur, “Business Intelligence on Supply Chain Responsiveness and Agile Performance: Empirical Evidence From Malaysian Logistics Industry,” Int. J. Supply Chain Manag., vol. 6, no. 2, pp. 31–63, 2021, doi: 10.47604/ijscm.1351.
H. Harreis, J. Machado, K. Rowshankish, R. Saxena, and R. Jain, “Master data management : The key to getting more from your data,” no. May, 2024, [Online]. Available: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/master-data-management-the-key-to-getting-more-from-your-data.
F. C. Daeng Bani, Suharjito, Diana, and A. S. Girsang, “Implementation of Database Massively Parallel Processing System to Build Scalability on Process Data Warehouse,” Procedia Comput. Sci., vol. 135, pp. 68–79, 2018, doi: 10.1016/j.procs.2018.08.151.
H. Muhrial, B. Purnomosidi.D.P, W. Andriyani, and H. Hamdani, “Data Warehouse to Support the Decision Using Vikor Method,” J. Intell. Softw. Syst., vol. 1, no. 2, p. 153, 2022, doi: 10.26798/jiss.v1i2.767.
J. Wiratama and M. Abhinaya Bagioyuwono, “Improving the Data Management: ETL Implementation on Data Warehouse at Indonesian Vehicle Insurance Industry,” Int. J. Sci. Technol. Manag., vol. 4, no. 5, pp. 1256–1268, 2023, doi: 10.46729/ijstm.v4i5.936.
O. E.Sheta and A. N. Eldeen, “The Technology of Using a Data Warehouse to Support Decision-Making in Health Care,” Int. J. Database Manag. Syst., vol. 5, no. 3, pp. 75–86, 2013, doi: 10.5121/ijdms.2013.5305.
T. Z. Ali, T. M. Abdelaziz, A. M. Maatuk, and S. M. Elakeili, “A framework for improving data quality in data warehouse: A case study,” Proc. - 2020 21st Int. Arab Conf. Inf. Technol. ACIT 2020, no. November, 2020, doi: 10.1109/ACIT50332.2020.9300119.
J. Thomas and A. Kamran, “Business Process Optimization through Advanced Data Analytics,” no. October, 2023, [Online]. Available: https://www.researchgate.net/publication/374909518.
M. D. Arifin, “Application of Internet of Things (IoT) and Big Data in the Maritime Industries: Ship Allocation Model,” Int. J. Mar. Eng. Innov. Res., vol. 8, no. 1, pp. 97–108, 2023, doi: 10.12962/j25481479.v8i1.16405.
M. O. Akinde, M. H. Böhlen, T. Johnson, L. V. S. Lakshmanan, and D. Srivastava, “Efficient olap query processing in distributed data warehouses,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2287, pp. 336–353, 2002, doi: 10.1007/3-540-45876-x_23.
F. L. Gaol, R. A. Siswanto, and T. Matsuo, “Architectural modeling of data warehouse and analytic business intelligence for Bedstead manufacturers,” Open Eng., vol. 13, no. 1, 2023, doi: 10.1515/eng-2022-0508.
E. Abdelhamid, N. Tsikoudis, M. Duller, M. Sugiyama, N. E. Marino, and F. M. Waas, “Adaptive Real-time Virtualization of Legacy ETL Pipelines in Cloud Data Warehouses,” Adv. Database Technol. - EDBT, vol. 26, no. 3, pp. 765–772, 2023, doi: 10.48786/edbt.2023.64.
G. Garani, D. Tolis, and I. K. Savvas, “A trajectory data warehouse solution for workforce management decision-making,” Data Sci. Manag., vol. 6, no. 2, pp. 88–97, 2023, doi: 10.1016/j.dsm.2023.03.002.
O. CIRKIN, “Data Warehouse, Detection and Transfer of Anomalies in Retail Data,” Eur. J. Res. Dev., vol. 3, no. 2, pp. 46–53, 2023, doi: 10.56038/ejrnd.v3i2.265.
L. Dinesh and K. G. Devi, “An efficient hybrid optimization of ETL process in data warehouse of cloud architecture,” J. Cloud Comput., vol. 13, no. 1, 2024, doi: 10.1186/s13677-023-00571-y.
O. Prokopenko, A. Dikiy, N. Butenko, M. Naumenko, T. Dedilova, and R. Miroshnyk, “Business process optimization based on logistics concepts and technologies,” Int. J. Adv. Res. Eng. Technol., vol. 11, no. 6, pp. 184–196, 2020, doi: 10.34218/IJARET.11.6.2020.017.
S. Maesaroh, H. Gunawan, A. Lestari, M. S. A. Tsaurie, and M. Fauji, “Query Optimization In MySQL Database Using Index,” Int. J. Cyber IT Serv. Manag., vol. 2, no. 2, pp. 104–110, 2022, doi: 10.34306/ijcitsm.v2i2.84.
J. Hildebrandt, J. Pietrzyk, A. Krause, D. Habich, and W. Lehner, “Partition-based SIMD Processing and its Application to Columnar Database Systems,” Datenbank-Spektrum, vol. 23, no. 1, pp. 53–63, 2023, doi: 10.1007/s13222-022-00431-0.
Z. Hu, C. Fan, Q. Zheng, W. Wu, and B. Liu, “Asyncflow: A visual programming tool for game artificial intelligence,” Vis. Informatics, vol. 5, no. 4, pp. 20–25, 2021, doi: 10.1016/j.visinf.2021.11.001.